# 10. Learning to Rank

### **Outline**

- 10.1. Why Learning to Rank (LeToR)?
- 10.2. Pointwise, Pairwise, Listwise
- 10.3. Gathering User Input
- 10.4. LeToR Evaluation
- 10.5. Beyond Search

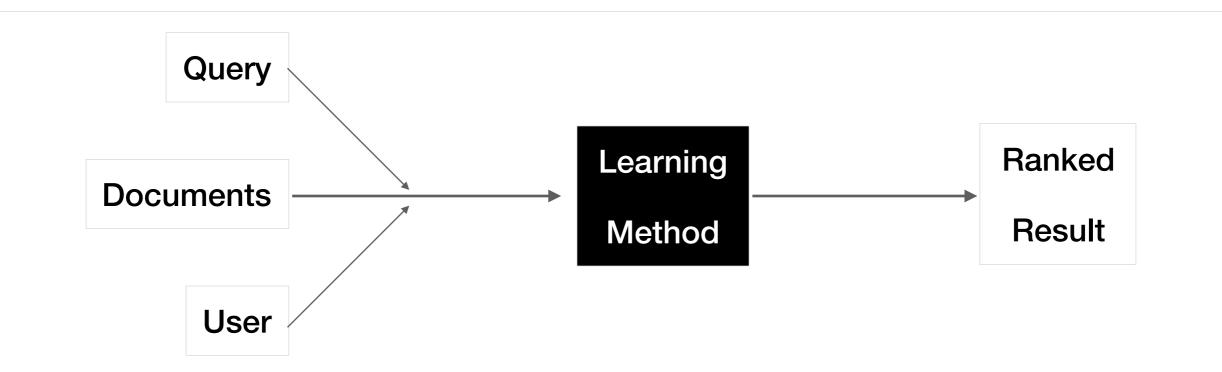
# 10.1. Why Learning to Rank?

- Various features (signals) exist that can be used for ranking
  - textual relevance (e.g., determined using a LM or Okapi BM25)
  - proximity of query keywords in document content
  - link-based importance (e.g., determined using PageRank)
  - depth of URL (top-level page vs. leaf page)
  - spamminess (e.g., determine using SpamRank)
  - host importance (e.g., determined using host-level PageRank)
  - readability of content
  - ...

# Why Learning to Rank?

- Traditional approach to combining different features
  - normalize features (zero mean, unit standard deviation)
  - feature combination function (typically: weighted sum)
  - tune weights (either manually or exhaustively via grid search)
- Learning to rank makes combining features more systematic
  - builds on established methods from Machine Learning
  - allows different targets derived from different kinds of user input
  - active area of research for past ~10 years
  - early work by Norbert Fuhr [1] from 1989

### 10,000 ft. View



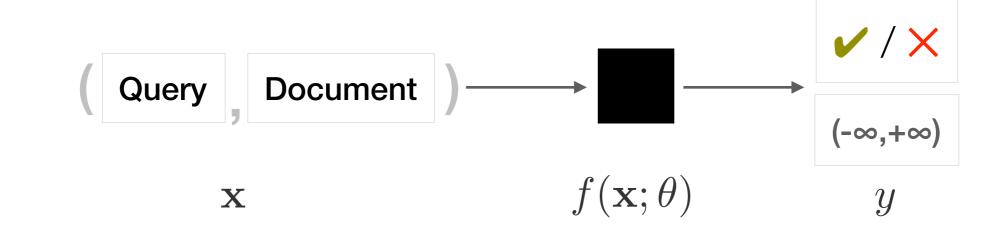
#### Open Issues:

- how do we model the problem?
- is it a regression or classification problem?
- what is our prediction target?

### 10.2. Pointwise, Pairwise, Listwise

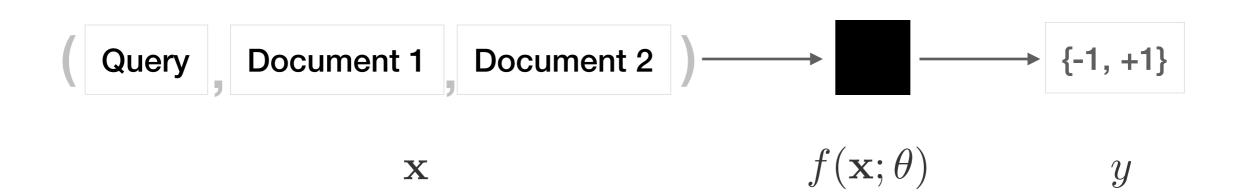
- Learning to rank problem can be modeled in three different ways
  - predict goodness of individual documents (pointwise)
  - predict users' relative preference for pairs of documents (pairwise)
  - predict goodness of entire query result (listwise)
- Each way of modeling has advantages and disadvantages; for each of them several (many) concrete approaches exist
  - we'll stay at a conceptual level
  - for an in-depth discussion of concrete approaches see Liu [3]

### **Pointwise**



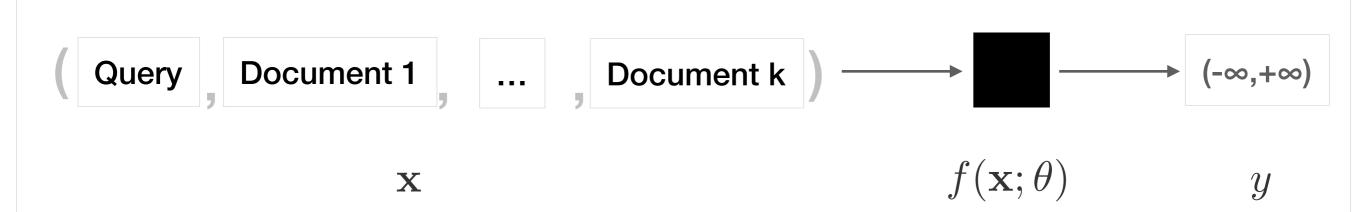
- Pointwise approaches predict
  - for every document based on its feature vector x
  - document goodness y (e.g., a label or measure of engagement)
  - training determines the parameter θ based on a loss function (e.g., root-mean-square error)

### **Pairwise**



- Pairwise approaches predict
  - for every pair of documents based on a feature vector x
  - users' relative preference regarding the documents
     (+1 shows preference for Document 1; -1 for Document 2)
  - training determines the parameter θ based on a loss function (e.g., the number of inverted pairs)

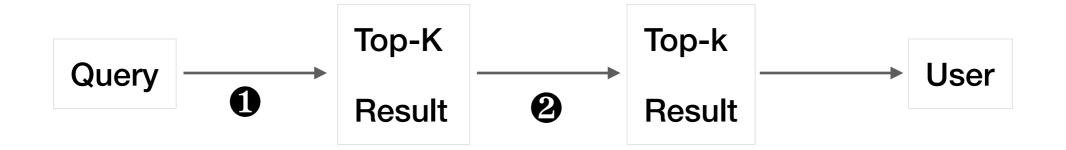
### Listwise



- Listwise approaches predict
  - for a ranked list of documents based on a feature vector x
  - effectiveness of ranked list y (e.g., MAP or nDCG)
  - training determines the parameter θ based on a loss function

# Typical Learning-to-Rank Pipeline

 Learning to rank is typically deployed as a re-ranking step, since it is infeasible to apply it to entire document collection



- Step 1: Determine a top-K result (K ~ 1,000) using a proven baseline retrieval method (e.g., Okapi BM25 + PageRank)
- Step 2: Re-rank documents from top-K using learning to rank approach, then return top-k (k ~ 100) to user

# 10.3. Gathering User Input

- Regardless of whether a pointwise, pairwise, or listwise approach is employed, some input from the user is required to determine prediction target y
  - explicit user input (e.g., relevance assessments)
  - implicit user input (e.g., by analyzing their behavior)

### **Relevance Assessments**

 Construct a collection of (difficult) queries, pool results from different baselines, and gather graded relevance assessments from human assessors

#### Problems:

- hard to represent query workload within 50, 500, 5K queries
- difficult for queries that require personalization or localization
- expensive, time-consuming, and subject to Web dynamics

### **Clicks**

- Track user behavior and measure their engagement with results
  - click-through rate of document when shown for query
  - dwell time, i.e., how much time did the user spend on the document

#### Problems:

- position bias (consider only first result shown)
- spurious clicks (consider only clicks with dwell time above threshold)
- feedback loop (add some randomness to results)

Joachims et al. [2] and Radlinksi et al. [4] study the reliability of click data

# Skips

 Joachims et al. [2] propose to use skips in addition to clicks as a source of implicit feedback based on user behavior

Top-5: d<sub>1</sub> d<sub>3</sub> d<sub>9</sub> d<sub>11</sub> click

- **skip previous**:  $d_1 > d_7$  and  $d_9 > d_3$  (i.e., user prefers  $d_1$  over  $d_7$ )
- **skip above**:  $d_1 > d_7$  and  $d_9 > d_3$ ,  $d_9 > d_7$
- Users study reported in [2] shows that derived relative preferences
  - are less biased than measures merely based on clicks
  - show moderate agreement with explicit relevance assessments

# 10.4. Learning to Rank Evaluation

- Several benchmark datasets have been released to allow for a comparison of different learning-to-rank methods
  - LETOR 2.0 (2007), 3.0 (2008), 4.0 (2009) by Microsoft Research Asia based on publicly available document collections, comes with precomputed low-level features, relevance assessments
  - Yahoo! Learning to Rank Challenge (2010) by Yahoo! Labs comes with precomputed low-level features and relevance assessments
  - Microsoft Learning to Rank Datasets by Microsoft Research U.S. comes with precomputed low-level features and relevance assessments

| Feature List of Microsoft Learning to Rank Datasets |                           |                |          |
|-----------------------------------------------------|---------------------------|----------------|----------|
| feature<br>id                                       | feature description       | stream         | comments |
| 1                                                   |                           | body           |          |
| 2                                                   |                           | anchor         |          |
| 3                                                   | covered query term number | title          |          |
| 4                                                   |                           | url            |          |
| 5                                                   |                           | whole document |          |
| 6                                                   |                           | body           |          |
| 7                                                   |                           | anchor         |          |
| 8                                                   | covered query term ratio  | title          |          |
| 9                                                   |                           | url            |          |
| 10                                                  |                           | whole document |          |
| 11                                                  |                           | body           |          |
| 17                                                  |                           | anchor         |          |

| 12 |                                 | anchor         |  |
|----|---------------------------------|----------------|--|
| 13 | stream length                   | title          |  |
| 14 |                                 | url            |  |
| 15 |                                 | whole document |  |
| 16 |                                 | body           |  |
| 17 |                                 | anchor         |  |
| 18 | IDF(Inverse document frequency) | title          |  |
| 19 |                                 | url            |  |
| 20 | ]                               | whole document |  |
| 21 |                                 | body           |  |
| 22 |                                 | anchor         |  |
| 23 | sum of term frequency           | title          |  |
| 24 |                                 | url            |  |
| 25 |                                 | whole document |  |
| 20 |                                 |                |  |

| 26 |                        | body           |  |
|----|------------------------|----------------|--|
| 27 |                        | anchor         |  |
| 28 | min of term frequency  | title          |  |
| 29 |                        | url            |  |
| 30 |                        | whole document |  |
| 31 |                        | body           |  |
| 32 |                        | anchor         |  |
| 33 | max of term frequency  | title          |  |
| 34 |                        | url            |  |
| 35 |                        | whole document |  |
| 36 |                        | body           |  |
| 37 |                        | anchor         |  |
| 38 | mean of term frequency | title          |  |
| 39 |                        | url            |  |
| 40 | ]                      | whole decument |  |

| 41   |                                                   | body           |  |
|------|---------------------------------------------------|----------------|--|
| 42   |                                                   | anchor         |  |
| 43   |                                                   | title          |  |
| 44   |                                                   | url            |  |
| 45   |                                                   | whole document |  |
| 46   |                                                   | body           |  |
| 47   | sum of stream length normalized term frequency    | anchor         |  |
| 48   |                                                   | title          |  |
| 49   |                                                   | url            |  |
| 50   |                                                   | whole document |  |
| 51   |                                                   | body           |  |
| 52   | min of stream length normalized<br>term frequency | anchor         |  |
| 15.3 |                                                   | title          |  |
| 54   |                                                   | url            |  |
| C C  |                                                   | whole decument |  |

| 96  |                    | body           |  |
|-----|--------------------|----------------|--|
| 97  |                    | anchor         |  |
| 98  | boolean model      | title          |  |
| 99  |                    | url            |  |
| 100 |                    | whole document |  |
| 101 |                    | body           |  |
| 102 |                    | anchor         |  |
| 103 | vector space model | title          |  |
| 104 |                    | url            |  |
| 105 |                    | whole document |  |
| 106 |                    | body           |  |
| 107 |                    | anchor         |  |
| 108 | BM25               | title          |  |
| 109 |                    | url            |  |
| 110 |                    | bala da aaa    |  |

| 111 |          | body              | Language model                                |
|-----|----------|-------------------|-----------------------------------------------|
| 112 |          | anchor            | approach for information                      |
| 113 | LMIR.ABS | title             | retrieval (IR) with                           |
| 114 |          | url               | absolute discounting                          |
| 115 |          | whole document    | smoothing                                     |
| 116 |          | body              | l anguago model                               |
| 117 |          | anchor            | Language model                                |
| 118 | LMIR.DIR | title             | approach for IR with Bayesian smoothing using |
| 119 |          | url               | Dirichlet priors                              |
| 120 |          | whole document    | Diriciliet priors                             |
| 121 |          | body              |                                               |
| 122 |          | anchor            | Language model                                |
| 123 | LMIR.JM  | title             | approach for IR with                          |
| 124 |          | url               | Jelinek-Mercer smoothing                      |
| 125 | 1        | ulada da suna ant | 1                                             |

| 126 | Number of slash in URL |                           |
|-----|------------------------|---------------------------|
| 127 | Length of URL          |                           |
| 128 | Inlink number          |                           |
| 129 | Outlink number         |                           |
| 130 | PageRank               |                           |
| 131 | SiteRank               | Site level PageRank       |
|     |                        | The quality score of a    |
| 132 | QualityScore           | web page. The score is    |
|     | QualityScore           | outputted by a web page   |
|     |                        | quality classifier.       |
|     |                        | The quality score of a    |
|     |                        | web page. The score is    |
| 133 | QualityScore2          | outputted by a web page   |
|     | Quality3Corez          | quality classifier, which |
|     |                        | measures the badness of   |

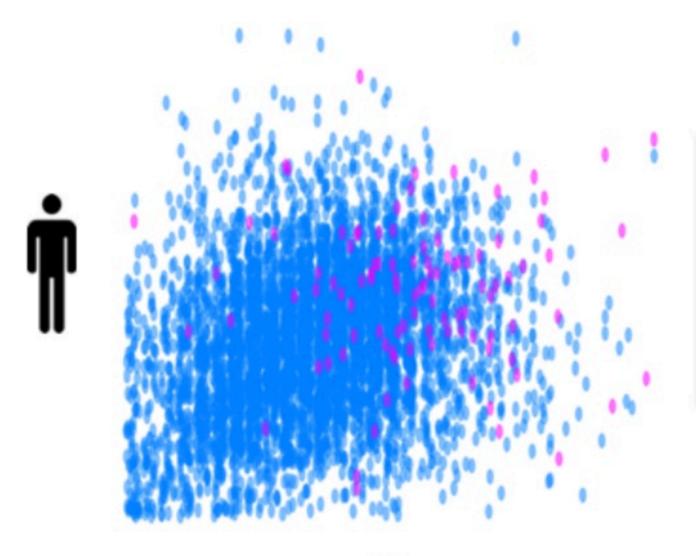
| 133 | QualityScore2         | web page. The score is outputted by a web page quality classifier, which measures the badness of a web page. |
|-----|-----------------------|--------------------------------------------------------------------------------------------------------------|
| 134 | Query-url click count | The click count of a query-url pair at a search engine in a period                                           |
| 135 | url click count       | The click count of a url aggregated from user browsing data in a period                                      |
| 136 | url dwell time        | The average dwell time of a url aggregated from user browsing data in a period                               |

## 10.5. Beyond Search

- Learning to rank is applicable beyond web search
- Example: Matching in eHarmony.com
  - based on WSDM 2014 talk by Vaclav Petricek
  - Step 1: Compatibility matching based on 150 questions regarding personality, values, attitudes, beliefs
     predict marital satisfaction
  - Step 2: Affinity matching based on other features such as distance, height difference, zoom level of photo
     predict probability of message exchange
  - Step 3: Match distribution based on graph optimization problem (constrained max flow)
- Slides: <a href="http://www.slideshare.net/VaclavPetricek/data-science-of-love">http://www.slideshare.net/VaclavPetricek/data-science-of-love</a>

## Compatibility Matching

#### Obstreperousness



### ob·strep·er·ous

/əb'strepərəs/ 4)

Adjective

Noisy and difficult to control: "the boy is cocky and obstreperous".

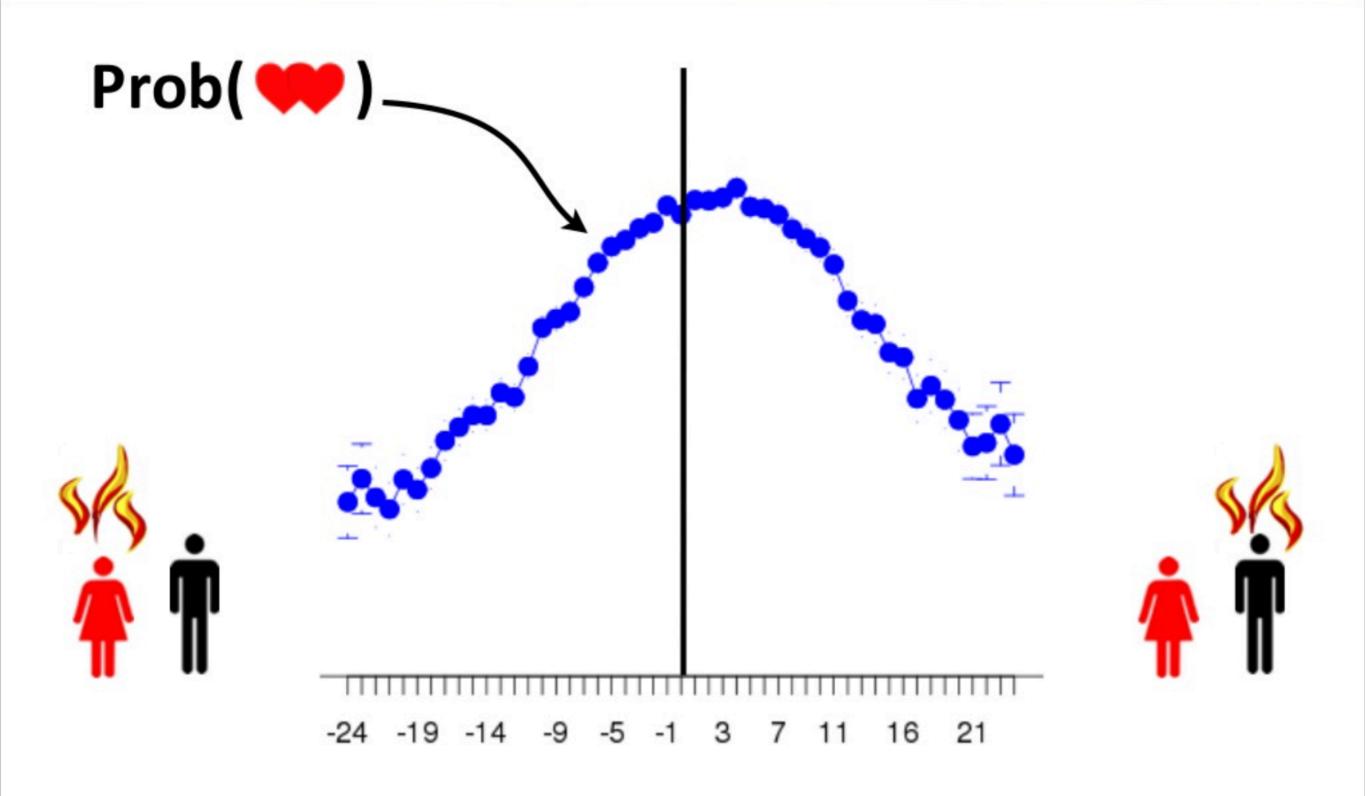
Synonyms

noisy - loud - clamorous - rumbustious - boisterous



## 10.5. Beyond Search

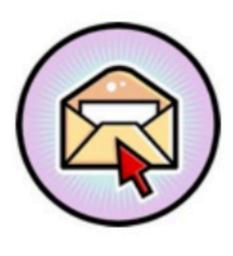
- Learning to rank is applicable beyond web search
- Example: Matching in eHarmony.com
  - based on WSDM 2014 talk by Vaclav Petricek
  - Step 1: Compatibility matching based on 150 questions regarding personality, values, attitudes, beliefs
     predict marital satisfaction
  - Step 2: Affinity matching based on other features such as distance, height difference, zoom level of photo
     predict probability of message exchange
  - Step 3: Match distribution based on graph optimization problem (constrained max flow)
- Slides: <a href="http://www.slideshare.net/VaclavPetricek/data-science-of-love">http://www.slideshare.net/VaclavPetricek/data-science-of-love</a>



## 10.5. Beyond Search

- Learning to rank is applicable beyond web search
- Example: Matching in eHarmony.com
  - based on WSDM 2014 talk by Vaclav Petricek
  - Step 1: Compatibility matching based on 150 questions regarding personality, values, attitudes, beliefs
     predict marital satisfaction
  - Step 2: Affinity matching based on other features such as distance, height difference, zoom level of photo
     predict probability of message exchange
  - Step 3: Match distribution based on graph optimization problem (constrained max flow)
- Slides: <a href="http://www.slideshare.net/VaclavPetricek/data-science-of-love">http://www.slideshare.net/VaclavPetricek/data-science-of-love</a>

# Affinity Matching > Zoom level





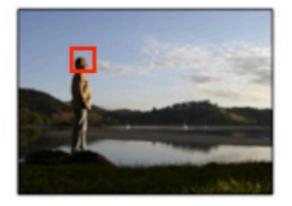








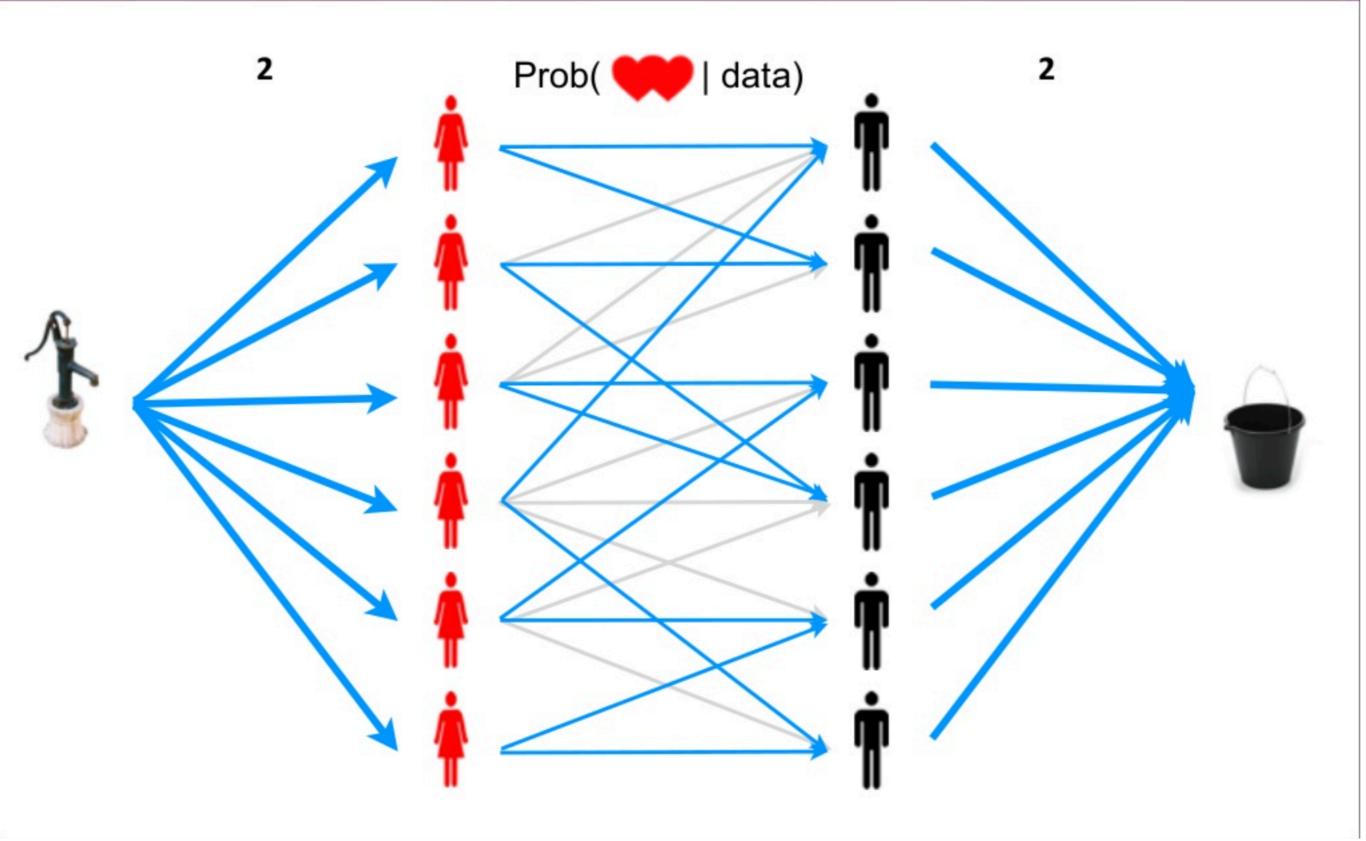




## 10.5. Beyond Search

- Learning to rank is applicable beyond web search
- Example: Matching in eHarmony.com
  - based on WSDM 2014 talk by Vaclav Petricek
  - Step 1: Compatibility matching based on 150 questions regarding personality, values, attitudes, beliefs
     predict marital satisfaction
  - Step 2: Affinity matching based on other features such as distance, height difference, zoom level of photo
     predict probability of message exchange
  - Step 3: Match distribution based on graph optimization problem (constrained max flow)
- Slides: <a href="http://www.slideshare.net/VaclavPetricek/data-science-of-love">http://www.slideshare.net/VaclavPetricek/data-science-of-love</a>

### Match Distribution > Graph optimization



## 10.5. Beyond Search

- Learning to rank is applicable beyond web search
- Example: Matching in eHarmony.com
  - based on WSDM 2014 talk by Vaclav Petricek
  - Step 1: Compatibility matching based on 150 questions regarding personality, values, attitudes, beliefs
     predict marital satisfaction
  - Step 2: Affinity matching based on other features such as distance, height difference, zoom level of photo
     predict probability of message exchange
  - Step 3: Match distribution based on graph optimization problem (constrained max flow)
- Slides: <a href="http://www.slideshare.net/VaclavPetricek/data-science-of-love">http://www.slideshare.net/VaclavPetricek/data-science-of-love</a>

### **Summary**

- Learning to rank provides systematic ways to combine features
- Pointwise approaches
   predict goodness of individual document
- Pairwise approaches
   predict relative preference for document pairs
- Listwise approaches
   predict effectiveness of ranked list of documents
- Explicit and implicit user inputs
  include relevance assessments, clicks, and skips
- Learning to rank is applicable beyond web search

### References

- [1] **N. Fuhr:** Optimum Polynomial Retrieval Functions based on the the Probability Ranking Principle, ACM TOIS 7(3), 1989
- [2] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radklinski, G. Gay: Evaluating the Accuracy of Implicit Feedback from Clicks and Query Reformulations in Web Search, ACM TOIS 25(2), 2007
- [3] **T.-Y. Liu:** Learning to Rank for Information Retrieval, Foundations and Trends in Information Retrieval 3(3):225–331, 2009
- [4] **F. Radlinski and T. Joachims:** *Query Chains: Learning to Rank from Implicit* Feedback, KDD 2005