
Geometric Registration for 
Deformable Shapes

2.2 Deformable Registration
Variational Model· Deformable ICP



Variational Model
What is deformable shape matching?
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Example

?

What are the Correspondences?
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What are we looking for?

Problem Statement:

Given:
• Two surfaces S1, S2 ⊆ ℝ3

We are looking for:
• A reasonable deformation function f: S1 → ℝ3

that brings S1 close to S2

?

S1

S2

f
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Example

?

Correspondences? no shape match

too much deformation optimum
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This is a Trade-Off

Deformable Shape Matching is a Trade-Off:
• We can match any two shapes 

using a weird deformation field

• We need to trade-off:
 Shape matching (close to data)
 Regularity of the deformation field (reasonable match)
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Components:

Matching Distance:

Deformation / rigidity:

Variational Model
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Variational Model

Variational Problem:
• Formulate as an energy minimization problem:

)()()( )()( fEfEfE rregularizematch +=
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Part 1: Shape Matching

Assume:
• Objective Function:

• Example: least squares distance

• Other distance measures:
Hausdorf distance, Lp-distances, etc.

• L2 measure is frequently used (models Gaussian noise)
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Point Cloud Matching

Implementation example: Scan matching
• Given: S1, S2 as point clouds

 S1 = {s1
(1), …, sn

(1)} 
 S2 = {s1

(2), …, sm
(2)}

• Energy function:

• How to measure                   ?

 Estimate distance to a point sampled surface
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Surface approximation

Solution #1: Closest point matching
• “Point-to-point” energy
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Surface approximation

Solution #2: Linear approximation
• “Point-to-plane” energy
• Fit plane to k-nearest neighbors
• k proportional to noise level, typically k ≈ 6…20

si
(2)

f(S1)
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Surface approximation

Solution #3: Higher order approximation
• Higher order fitting (e.g. quadratic)

 Moving least squares

si
(2)

f(S1)
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Variational Model

Variational Problem:
• Formulate as an energy minimization problem:

)()()( )()( fEfEfE rregularizematch +=
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What is a “nice” deformation field?
• Isometric “elastic” energies

 Extrinsic (“volumetric deformation”)
 Intrinsic (“as-isometric-as

possible embedding”)

• Thin shell model
 Preserves shape (metric plus curvature)

• Thin-plate splines
 Allowing strong deformations, but keep shape

Part II: Deformation Model

)()( fE rregularize
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Elastic Volume Model

Extrinsic Volumetric “As-Rigid-As Possible”
• Embed source surface S1 in volume
• f should preserve 3×3 metric tensor (least squares)

[ ]∫ −∇∇=
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2T)( )(
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Volume Model

Variant: Thin-Plate-Splines
• Use regularizer that penalizes curved deformation

second derivative (ℝ3×3)
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How does the deformation look like?

original

as-rigid-as
possible
volume

thin
plate

splines
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Intrinsic Matching (2-Manifold)
• Target shape is given and complete
• Isometric embedding

[ ]∫ −∇∇=
1

2T)( )(
S

rregularize dxfffE I
first fund. form (S1, intrinsic)
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Isometric Regularizer
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“Thin Shell” Energy
• Differential geometry point of view

 Preserve first fundamental form I
 Preserve second fundamental form II
 …in a least least squares sense

• Complicated to implement
• Usually approximated

 Volumetric shells (as shown before)
 Other approximation (next slide)

20

Elastic “Thin Shell” Regularizer
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Example Implementation

Example: approximate thin shell model
• Keep locally rigid

 Will preserve metric & curvature implicitly

• Idea
 Associate local rigid transformation with surface points
 Keep as similar as possible
 Optimize simultaneously with deformed surface

• Transformation is implicitly defined by deformed surface 
(and vice versa)

21
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Parameterization

Parameterization of S1
• Surfel graph 
• This could be a mesh, but does not need to

edges encode
topology

surfel graph
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Deformation

Ai

Orthonormal Matrix Ai

per surfel (neighborhood),
latent variable

Ai

prediction
frame t frame t+1
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Deformation

Ai

Orthonormal Matrix Ai

per surfel (neighborhood),
latent variable
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frame t frame t+1
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Unconstrained Optimization

Orthonormal matrices
• Local, 1st order, non-degenerate parametrization:

• Optimize parameters α, β, γ, then recompute A0

• Compute initial estimate using [Horn 87 ]
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Variational Model

Variational Problem:
• Formulate as an energy minimization problem:

)()()( )()( fEfEfE rregularizematch +=



Deformable ICP
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Deformable ICP

How to build a deformable ICP algorithm
• Pick a surface distance measure
• Pick an deformation model / regularizer

2828

)()()( )()( fEfEfE rregularizematch +=
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Deformable ICP

How to build a deformable ICP algorithm
• Pick a surface distance measure
• Pick an deformation model / regularizer
• Initialize f(S1) with S1 (i.e., f = id)
• Pick a non-linear optimization algorithm

 Gradient decent (easy, but bad performance)
 Preconditioned conjugate gradients (better)
 Newton or Gauss Newton (recommended, but more work)
 Always use analytical derivatives!

• Run optimization
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Example

Example
• Elastic model
• Local rigid coordinate

frames
• Align A→B, B→A

30
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