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Pairwise, Rigid Registration
The ICP Algorithm and Its Variants
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Correspondence Problem Classification

How many meshes?
• Two: Pairwise registration

• More than two: multi-view registration

Initial registration available?
• Yes: Local optimization methods

• No: Global methods

Class of transformations?
• Rotation and translation: Rigid-body

• Non-rigid deformations
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Pairwise Rigid Registration Goal

Align two partially-
overlapping meshes
given initial guess
for relative transform

Presenter
Presentation Notes
So, let’s formalize the rigid registration problem as solving for a rigid-body transform (i.e., translation and rotation, or 6 total degrees of freedom in 3D) that minimizes the distance between two partially-overlapping meshes.  We’ll focus on iterative algorithms that converge to a local minimum, so we’ll assume that we have an initial guess already.
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Outline

ICP: Iterative Closest Points

• Find correspondences

• Minimize surface-to-surface distance

Classification of ICP variants

• Faster alignment

• Better robustness

ICP as function minimization

Presenter
Presentation Notes
We’ll be talking about the best-known such algorithm, ICP, together with some variants that make it faster or more robust.
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Aligning 3D Data

If correct correspondences are known, can find 
correct relative rotation/translation

Presenter
Presentation Notes
The basic idea behind ICP is that, if we somehow knew correspondences, we could solve for the translation that minimizes pairwise distance.
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Aligning 3D Data

How to find correspondences:  User input?
Feature detection?  Signatures?

Alternative: assume closest points correspond

Presenter
Presentation Notes
What ICP does is make a seemingly-radical guess: that closest points are the correspondences.  You take these, run the point pairs through the minimization algorithms, and get… the wrong answer.  However, if you started out reasonably close, this process got you closer…
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Aligning 3D Data

… and iterate to find alignment

• Iterative Closest Points (ICP)  [Besl & McKay 92]

Converges if starting position “close enough“

Presenter
Presentation Notes
… which means that you can repeat the process and converge to the right answer.
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Basic ICP

Select e.g. 1000 random points

Match each to closest point on other scan,
using data structure such as k-d tree

Reject pairs with distance > k times median

Construct error function: 

Minimize (closed form solution in [Horn 87])
2∑ −+= iiE qtRp

Presenter
Presentation Notes
So, here’s a slightly formalized version of that algorithm.
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ICP Variants

Variants on the following stages of ICP
have been proposed:

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation

Presenter
Presentation Notes
If we look at the preceeding algorithm, we can see that it consists of a bunch of different stages, and there are different choices you can make at each stage.  It turns out that there’s been a lot of research on ICP and, to a good approximation, you can classify all the different tweaks to ICP that people have proposed into variants on 6 different stages.
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Performance of Variants

Can analyze various aspects of performance:

• Speed

• Stability

• Tolerance of noise and/or outliers

• Maximum initial misalignment

Comparisons of many variants in
[Rusinkiewicz & Levoy, 3DIM 2001]

Presenter
Presentation Notes
Each variant has some effect on the speed or robustness of the method, and there are a few cocktails of variants that have proven reasonably popular over the years.  The next bit of this course is going to be about looking at those.
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ICP Variants

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation

Presenter
Presentation Notes
The first thing we’ll talk about is a change that makes a huge (an order of magnitude or more) difference in the convergence of ICP.  It’s a change in the “error metric.”
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Point-to-Plane Error Metric

Using point-to-plane distance instead of point-to-point 
lets flat regions slide along each other [Chen & Medioni 91]

Presenter
Presentation Notes
The idea is that instead of minimizing the distance between pairs of points, we’ll minimize the distance between one of the points and the plane passing through the other and perpendicular to its normal.  (This, of course, assumes that you’ve estimated normals, which is typically done just by fitting planes to small neighborhoods of points, etc.)

The big advantage of this is that it better captures the notion that sliding two planes along each other doesn’t increase the distance between them.  Consider, for example, the situation shown at right.  You have two scans that are mostly planar, with only the little bump constraining their left-and-right motion.  Using the original point-to-point distance, however, the pairs of points in the flat region will prevent the scans from “sliding along each other” to reach the correct transformation: think of them as little springs that want to minimize their length.  Using the point-to-plane distance in this case will lead to significantly faster convergence.
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Point-to-Plane Error Metric

Error function:

where R is a rotation matrix, t is translation vector

Linearize (i.e. assume that sinθ ≈ θ, cosθ ≈ 1):

Result: overconstrained linear system

[ ]∑ ⋅−+= 2)( iiiE nqtRp

( )















=⋅+×⋅+⋅−≈ ∑

z

y

x

r
r
r

rntnprnqp where,)()( 2
iiiiiiE

Presenter
Presentation Notes
So, how do we actually implement this?  The first thing is to write down the error function: we’re taking the transformed version of point pi, finding the vector to qi, then taking just the component of that vector along the normal ni. This is a little nasty, since the matrix R involves some trig functions, etc., and minimizing this error function directly (i.e., solving for the components of R and t) can’t be done in closed form.  So, we’re going to make the problem linear by assuming that the angles we need to solve for are small, so we can use the usual first-order approximations to sine and cosine.  This lets us rewrite the energy function in a way that’s linear in the unknowns, and solve it using standard linear least squares.

In practice, making the assumption that angles are small is not too bad: the angles will be small in later iterations, while during early iterations the error of this approximation tends to be dominated by the fact that the correspondences aren’t really correct…  In short, it works really well in practice.
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Point-to-Plane Error Metric

Overconstrained linear system

Solve using least squares
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Presenter
Presentation Notes
So, how do we actually implement this?  The first thing is to write down the error function: we’re taking the transformed version of point pi, finding the vector to qi, then taking just the component of that vector along the normal ni. This is a little nasty, since the matrix R involves some trig functions, etc., and minimizing this error function directly (i.e., solving for the components of R and t) can’t be done in closed form.  So, we’re going to make the problem linear by assuming that the angles we need to solve for are small, so we can use the usual first-order approximations to sine and cosine.  This lets us rewrite the energy function in a way that’s linear in the unknowns, and solve it using standard linear least squares.

In practice, making the assumption that angles are small is not too bad: the angles will be small in later iterations, while during early iterations the error of this approximation tends to be dominated by the fact that the correspondences aren’t really correct…  In short, it works really well in practice.
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Improving ICP Stability

Can select variants to improve likelihood of
reaching correct local optimum

Presenter
Presentation Notes
The next set of ICP variants we’ll talk about concern making ICP more stable.
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ICP Variants

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation

Presenter
Presentation Notes
The first of these is a change to the matching stage of ICP.



17

Closest Compatible Point

Closest point often a bad approximation to 
corresponding point

Can improve matching effectiveness by 
restricting match to compatible points

• Compatibility of colors  [Godin et al. 94]

• Compatibility of normals  [Pulli 99]

• Other possibilities: curvatures, higher-order 
derivatives, and other local features

Presenter
Presentation Notes
The idea is that instead of just blindly choosing the closest point as your correspondence, you instead try to find better ones.  One way of phrasing this is as selecting the closest point that is compatible with the source point, by some metric(s).  This can be done based on color, normals, or any of the features covered earlier.

Note that there’s a different way of incorporating more information into the matching process, which is to directly do the matching in a higher-dimensional space, where 3 of the dimensions are just Euclidean coordinates, while the remaining dimensions correspond to your feature space.  This certainly can be made to work, but you sometimes encounter difficulties relating to how the different dimensions are scaled.  That is, there’s no natural way of saying e.g. how a distance of 3mm in space should be weighted relative to a distance of 10 in a color coordinate.  In practice, you need to use something like a Mahalanobis distance (i.e., give the dimensions a weight computed using variances (and covariances) of the data itself).
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ICP Variants

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation

Presenter
Presentation Notes
Let’s move on to a tweak you can make to the “selection” stage of ICP to give you better performance in difficult cases.
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Selecting Source Points

Use all points

Uniform subsampling

Random sampling

Stable sampling  [Gelfand et al. 2003]

• Select samples that constrain all degrees of 
freedom of the rigid-body transformation

Presenter
Presentation Notes
The idea is to select samples on the scan that are somehow the most relevant to constraining all the different degrees of freedom of the transformation you are solving for.
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Stable Sampling

Uniform Sampling Stable Sampling

Presenter
Presentation Notes
So, if you had this situation, you’d want to recognize that the up-and-down component of the motion is well-constrained by almost any point you choose.  In contrast, the left-and-right component of the transformation is really only established by points on the little bump in the center.  Random sampling might put few (or no) points on this bump, and hence be unstable.  So, we need some method for putting more points on this feature.
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Covariance Matrix

Aligning transform is given by ATAx = ATb, where

Covariance matrix C = ATA determines the change in error 
when surfaces are moved from optimal alignment
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Presenter
Presentation Notes
To do this, we need to go back and look at what happens when you solve for the transformation using the linearized point-to-plane framework we saw earlier.  Since this is a linear least squares problem, the crucial thing is the “covariance” matrix of the data, which encodes the shape of the error landscape around the minimum.
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Sliding Directions

Eigenvectors of C with small eigenvalues correspond to
sliding transformations

3 small eigenvalues
3 rotation

3 small eigenvalues
2 translation
1 rotation

2 small eigenvalues
1 translation
1 rotation

1 small eigenvalue
1 rotation

1 small eigenvalue
1 translation

[Gelfand]

Presenter
Presentation Notes
The eigenvalues of C, together with their corresponding eigenvectors, encode how stable particular transformations will be: eigenvectors with large eigenvalues correspond to transformations that are stable.  Here are a few examples of shapes that lead to small eigenvalues of C.  In each case, the number of small eigenvalues corresponds to the number of degrees of freedom of motion that are not well-constrained by the geometry: these are ways in which the object can “slip” along itself.
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Stability Analysis

Key: 3 DOFs stable

4 DOFs stable

5 DOFs stable

6 DOFs stable

Presenter
Presentation Notes
Here’s a color-coded visualization of this on a larger mesh, just looking at the stability of small neighborhoods of points.  Notice that it makes a lot of sense: locally-cylindrical areas are unstable along 1 degree of freedom, etc.  Of course, since we’re aligning whole scans instead of small neighborhoods this sort of local analysis doesn’t exactly tell the story of what will and will not be stable, but it turns out that we’ll encounter this local stability again when we talk about nonrigid alignment.



24

Sample Selection

Select points to prevent small eigenvalues

• Based on C obtained from sparse sampling

Simpler variant: normal-space sampling

• Select points with uniform distribution of 
normals

• Pro: faster, does not require eigenanalysis

• Con: only constrains translation

Presenter
Presentation Notes
So, now that we can analyze stability we can incorporate it into the sampling stage of ICP.  We want to constrain C to have no small eigenvalues, so we proceed as follows:

Figure out how bad the situation would be if we just used random sampling.  To do this, we estimate what C would be using just a small uniform sampling of points.
For each point, we figure out how much stability it is contributing to the transformation corresponding to each eigenvector of C.  We form sorted lists for each eigenvector, based on the points that constrain it the most.
Now, to do the “real” sampling, we draw points from the different lists, keeping track of how the different eigenvectors have been constrained.  When we notice that one eigenvector is underconstrained, we draw points from its list.
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Result

Stability-based or normal-space sampling 
important for smooth areas with small features

Random sampling Normal-space sampling

Presenter
Presentation Notes
Here’s a result of the normal-space sampling on real data.  This was a slab with engraved grooves on the front, and a combination of noise and warp (due to miscalibration) caused regular ICP to converge to the wrong transformation.  In contrast, the normal-space sampling got the grooves to line up between scans.
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Selection vs. Weighting

Could achieve same effect with weighting

Hard to ensure enough samples in features except 
at high sampling rates

However, have to build special data structure

Preprocessing / run-time cost tradeoff

Presenter
Presentation Notes
Note that if we had just taken more samples (to ensure that we got enough samples where we needed them), then we could have gotten the same effect by fudging the “weighting” stage of ICP rather than the point selection.  This represents a pretty classic preprocessing / run time tradeoff.
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Improving ICP Speed

Projection-based matching

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation

Presenter
Presentation Notes
Now let’s look at an ICP variant that’s all about speed.  It changes the matching stage.
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Finding Corresponding Points

Finding closest point is most expensive stage
of the ICP algorithm
• Brute force search – O(n)

• Spatial data structure (e.g., k-d tree) – O(log n)

Presenter
Presentation Notes
This variant is based on the observation that the slowest stage of most ICP algorithms is actually finding the closest point.  Typically a data structure such as a k-d tree is used to accelerate the search, but it’s still not that fast and of course there is the preprocessing time required to build that data structure in the first place.
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Projection to Find Correspondences

Idea: use a simpler algorithm to find correspondences
For range images, can simply project point  [Blais 95]

• Constant-time

• Does not require precomputing a spatial data structure

Presenter
Presentation Notes
However, we can make the observation that using the closest point is wrong anyway.  So, why not be a little more wrong as long as it’s fast?  For range images (i.e., scans that represent each point as a “height” or “distance” on a regularly-sampled grid) it is possible to just use the result of projecting a point onto the grid as the “correspondence”.  This is very fast (a bit of math and a single array lookup), but of course can be pretty far from the point you really wanted, depending on how far away you are from the right transformation.  So, this type of algorithm is most useful in cases where you are starting pretty close to the right answer already.
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Projection-Based Matching

Slightly worse performance per iteration

Each iteration is one to two orders of magnitude 
faster than closest-point

Result: can align
two range images
in a few milliseconds,
vs. a few seconds

Presenter
Presentation Notes
The net result is that alignment can be done in milliseconds per pair of meshes (these timings, by the way, are on 5-year-old hardware).
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Application

Given:

• A scanner that returns range images
in real time

• Fast ICP

• Real-time merging and rendering

Result: 3D model acquisition

• Tight feedback loop with user

• Can see and fill holes while scanning

Presenter
Presentation Notes
A good application of this type of fast ICP algorithm is a real-time scanner that returns range images at many frames per second.  The ICP can then align the images in real time and, because you typically start very close to the correct alignment already, there is little danger of incorrect convergence. [Rusinkiewicz et al. 2002]
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Scanner Layout

Presenter
Presentation Notes
Here’s what the scanner looks like: it uses a camera and projector in a triangulated-structured-light system, and provides real-time feedback to the user.  The thing displayed on the monitor is NOT an image, but rather a rendering of the model acquired so far.  The user can see and immediately fill holes in the model.
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Photograph

Presenter
Presentation Notes
Here’s an object…
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Real-Time Result

Presenter
Presentation Notes
and here’s the result of this real-time 3D model acquisition system.
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Real-Time Result

Presenter
Presentation Notes
and here’s the result of this real-time 3D model acquisition system.
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Theoretical Analysis of ICP Variants

One way of studying performance is via 
empirical tests on various scenes

How to analyze performance analytically?

For example, when does point-to-plane help?  
Under what conditions does projection-based 
matching work?

Presenter
Presentation Notes
Now that we’ve looked at a few different ICP variants, it’s time to step back for a bit and think about what ICP is doing.
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What Does ICP Do?

Two ways of thinking about ICP:

• Solving the correspondence problem
(expectation maximization)

• Minimizing point-to-surface squared distance

ICP is like (Gauss-) Newton method on an 
approximation of the distance function

f(x)

Presenter
Presentation Notes
One way of thinking about it is that it’s solving the correspondence problem.  A different way, though, is that it’s minimizing a function: the distance from one scan to the other.  Equivalently, it’s trying to minimize the (squared) distance field of one scan, at locations on the surface of the other.  It does so using essentially a Newton-like iteration, on some approximation of the distance field.
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What Does ICP Do?

f’(x)

Two ways of thinking about ICP:

• Solving the correspondence problem
(expectation maximization)

• Minimizing point-to-surface squared distance

ICP is like (Gauss-) Newton method on an 
approximation of the distance function

Presenter
Presentation Notes
The iteration is basically finding the derivative of the function, extrapolating to zero, etc.
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What Does ICP Do?

f’(x)

Two ways of thinking about ICP:

• Solving the correspondence problem
(expectation maximization)

• Minimizing point-to-surface squared distance

ICP is like (Gauss-) Newton method on an 
approximation of the distance function

• ICP variants affect shape of
global error function or
local approximation

Presenter
Presentation Notes
The iteration is basically finding the derivative of the function, extrapolating to zero, etc.
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Point-to-Surface Distance

Presenter
Presentation Notes
Here’s a visualization of the actual function we’d like to use: this is the distance from any point in space to a scan.  Registration means minimizing the value of this function as evaluated at points on the other scan.
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Point-to-Point Distance

Presenter
Presentation Notes
Point-to-point (classic) ICP approximates the value of this function by the value of a spherically-symmetric function centered at the point closest to a point on the other scan.  How the scan is “pulled” depends on the first and second derivatives of this function.
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Point-to-Plane Distance

Presenter
Presentation Notes
Point-to-plane distance (Chen-Medioni ICP) approximates the function differently.  Using this function tends to provide a locally-better approximation to the true distance field than the point-to-point one.
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Point-to-Multiple-Point Distance

Presenter
Presentation Notes
One thing that some people have tried is an ICP variant that minimizes the distance from one point to several nearby points.  This results in a function that’s just the sum of these two spherical functions in space…
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Point-to-Multiple-Point Distance

Presenter
Presentation Notes
… which works out to be again spherically symmetric.
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Soft Matching and Distance Functions

Soft matching equivalent to standard ICP on (some) 
filtered surface

Produces filtered version of distance function
⇒ fewer local minima

Multiresolution minimization [Turk & Levoy 94]
or softassign with simulated annealing
(good description in [Chui 03])

Presenter
Presentation Notes
This means that this “soft” matching is equivalent to just doing standard point-to-point ICP on a smoothed version of the surface.  This is good, since it tends to help in avoiding local minima, but it often does not converge as fast as just doing point-to-plane.
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Mitra et al.’s Optimization

Precompute piecewise-quadratic approximation 
to distance field throughout space

Store in “d2tree” data structure

2D 3D

[Mitra et al. 2004]

Presenter
Presentation Notes
Mitra et al. propose an algorithm that does something different: they precompute and directly store the distance field throughout space.  They use a “d2tree” data structure, which is basically a decomposition of space (like a k-d tree) where each region stores the coefficients of a piecewise-quadric approximation to the distance field.
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Mitra et al.’s Optimization

Precompute piecewise-quadratic approximation 
to distance field throughout space

Store in “d2tree” data structure

At run time, look up quadratic approximants and 
optimize using Newton’s method

• Often fewer iterations, but more 
precomputation

• More robust, wider basin of convergence

Presenter
Presentation Notes
At run time, the appropriate derivatives of the distance field are looked up in the data structure, and the optimization directly uses Newton’s method.  They show that this makes the algorithm much more robust and increases the “basin of convergence” (of course, at the cost of the precomputation necessary to create the d2tree data structure.
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Convergence Funnel

Translation in x-z plane. 
Rotation about y-axis.

Converges

Does not converge
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Convergence Funnel

distance-field 
formulation

Plane-to-plane ICP
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Summary

ICP: Prototypical local alignment algorithm

Either:

• Find unknown correspondences using 
expectation maximization

or

• Find unknown transformation by iteratively 
minimizing surface-to-surface distance
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