4-Points Congruent Sets for Robust Pairwise Surface Registration

Niloy J. Mitra

Correspondence Problem Classification

How many meshes?

- Two: Pairwise registration
- More than two: multi-view registration

Initial registration available?

- Yes: Local optimization methods
- No: Global methods

Class of transformations?

- Rotation and translation: Rigid-body
- Non-rigid deformations

Problem Statement

Given: Two models

Problem Statement

Goal: Automatically align the models

Why is this Hard?

Given: Two scans

- corrupted with *noise* and *outliers*
- in arbitrary initial poses with unknown overlap

RANSAC for Line Fitting

Observations:

- Problem can be solved by a small number of (correct) points, e.g., 2 in line fitting
- Easy to verify solution (error measurement)

Let **p** be the probability of (random) picking a correct point Probability of getting correct result in **k** tries

$$(1-p)$$
 $(1-p)^k$ Prob. of success: $1-(1-p)^k$

guess and verify

Partial Matching

Aligning with Feature Points (FP)

Aligning with Feature Points

Aligning with Feature Points

Why not Denoise Scans?

de-noise, compute FP-s, align

align with 4PCS, de-noise

Key Observation

A pair of triples (from P and Q) is enough to uniquely define a rigid transform O(n³)

Surprisingly, a special set of 4-points, congruent sets, makes the problem simpler $O(n^2)$

4-Points Congruent Sets

Few matches —— output sensitive algorithm

Can be efficiently extracted

RANSAC iterations

RANSAC iterations

Random Sampling

FindCongruent

Key Observation

A pair of triples (from P and Q) is enough to uniquely define a rigid transform O(n³)

Surprisingly, a *special* set of 4-points, congruent sets, makes the problem simpler O(n²)

Affine Invariance

Affine Invariance

Affine Invariance

$$r_2$$
 r_2 $r_2 = rac{\|\mathbf{c} - \mathbf{e}\|}{\|\mathbf{c} - \mathbf{d}\|}$

$$\mathbf{a}',\mathbf{b}',r_1\to\mathbf{e}'$$

$$r_1 = \frac{\|\mathbf{a}' - \mathbf{e}'\|}{\|\mathbf{a}' - \mathbf{b}'\|}$$

What if $\mathbf{e}_1 \neq \mathbf{e}_2$?

typical scenario

What if $\mathbf{e}_1 = \mathbf{e}_2$?

typical scenario

 \mathbf{q}_1 \bigcirc \mathbf{q}_2

 \mathbf{q}_5 O

 $\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\} \equiv$ $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{q}_4\}$

FindCongruent

For all the points arising using r_1 build an approximate range-tree (ANN)

For all the points due to r₂, quickly lookup for neighbors using range-tree

Rigid Transformation

Euclidean distances are preserved

$$(\mathbf{q}_1, \mathbf{q}_2) \longrightarrow \|\mathbf{q}_1 - \mathbf{q}_2\| \approx \|\mathbf{a} - \mathbf{b}\|$$

SelectCoplanarBase

4PCS Algorithm

RANSAC iterations

SelectCoplanarBase

Select 3 points (from P) at random → 4th point to ensure (approx) coplanarity

Results

Effect of Noise

Why not Denoise Scans?

de-noise, compute FP-s, align

align with 4PCS, de-noise

Effect of Outliers

Varying Overlap

Varying Overlap

Building Facade

Jerusalem Scan

Jerusalem Scan

Try It

application

code

http://graphics.stanford.edu/~niloy/research/fpcs/fpcs_sig_08.html

Reference

4-points Congruent Sets for Robust Surface Registration, Dror Aiger, Niloy J. Mitra, Daniel Cohen-Or, SIGGRAPH 2008.