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Correspondence Problem Classification

How many meshes!?

* Two: Pairwise registration

* More than two: multi-view registration

Initial registration available?

* Yes: Local optimization methods
* No: Global methods

Class of transformations?
* Rotation and translation: Rigid-body

* Non-rigid deformations
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Registration Problem

Given:
Two shapes P and Q which partially
overlap.

Goal:

Using only rigid transforms,
register Q against P by minimizing
the squared distance between
them.

Find T s.t. T(P) =~ Q
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|CP for Refinement

When the input poses are nearly alignhed

How to get initial alighment?
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RANSAC styled Matching

How many (correct) point pairs uniquely
determines a rigid transform?

Rigid transform can be specified with small
number of points

* Try all possible transform bases

* Retain the one that aligns the most points

Guaranteed to find the correct transform
* But can be costly
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Feature Points can Help

Improves correspondence search or used for
feature extraction

* reduces the search space
* what are good features!
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Registration Problem

Why it’s hard
* Unknown areas of overlap

* Have to solve the correspondence problem

Why it’s easy
* Rigid transform is specified by small number of points
* Prominent features are easy to identify

We only need to align a few points correctly!
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Method Overview

1. Use descriptors to identify features

— Integral volume descriptor

2. Build correspondence search space

— Few correspondences for each feature

3. Efficiently explore search space

— Distance error metric

— Pruning algorithms
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Integral Descriptors manayetal. o4

Fo(p) = | f(x)da

Br(p)NS
‘Q Br(p)

Multi-scale

Inherent smoothing
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Efficient Computation

Approximate using a voxel grid

Convolution of occupancy grid with ball
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Which are good Feature Points?

Points with rare descriptor values

Rare in the data = rare in the model = few correspondences

Works for any (stable) descriptor
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Multi-scale Algorithm

Features should be persistent over scale (r)
variations
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Feature Properties

Sparse

Robust to noise
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Correspondence Space

Search the whole model for correspondences
* Range query for descriptor values
* Cluster and pick representatives
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Evaluating Correspondences

Coordinate root mean squared distance

1 T
cRMS?(P, Q) = min n- > IRp; + t — q;]|?

=1

* Requires best aligning transform
* Looks at correspondences individually
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Rigidity Constraint

Pair-wise distances between features and
correspondences should be preserved
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Rigidity Constraint

Pair-wise distances between features and
correspondences should be preserved
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Rigidity Constraint

Pair-wise distances between features and
correspondences should be preserved
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Evaluating Correspondences

Distance root mean squared distance

1
dRMS?(P,Q) = —;
n

mn mn 2
> > Ulpi—pjll—llai—ajl])
1=17=1

no dependence on (R,t)

Depends only on internal distance matrix

LcRMS(P,Q) < dRMS(P,Q) < V2 cRMS(P, Q)

kv/m
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Search Algorithm

Few features, each with few potential
correspondences
* Minimize dRMS

* Exhaustive search still too expensive
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Search Algorithm

Branch and bound
Initial bound using greedy assighment

Discard partial correspondences that fail thresholding
test

Ipi = pjll = llai = g;ll] < 2R,

C
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Search Algorithm

Branch and bound
Initial bound using greedy assighment

Discard partial correspondences that fail thresholding
test
llpi = pjll — lla: — 4;[ll < 2R

Prune if partial correspondence exceeds bound
Spaced out features make incorrect correspondences fail quickly

Since we explore the entire search space, we are
uaranteed to find optimal alighment
?up to cluster size)
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Greedy Initialization

(see paper)
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Partial Alignment

Allow null correspondences,
while maximizing the number of matches points
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Alignment Results

iInput: 2 scans global alignment refined by ICP
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Alignment Results
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global alignment refined by ICP

iInput: 10 scans
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Robust Global Registration

Intrinsic Descriptors

Global Shape Matching: Intrinsic Descriptors



(Modified) Goal

Intrinsic Comparison of Points

Isometry invariant symmetries

T:M— M, st. dy(z,y) =dpy(T(z), T(y)) Vz,vy
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Goal

Multi-Scale Intrinsic Comparison of Points

T : M — M, S.t. dM(a:,y) = dM(T(a:),T(y))
V y e N(x)
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Integral Volume Descriptor
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Relation to mean curvature
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Desirable Properties

Find “similar” points at multiple scales.

robust

not sensitive to perturbations of the shape

Intrinsic

invariant to isometric deformations

efficient

easily computable across many scales
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Old Idea

Define a multiscale signhature for every point
Compare points by comparing their sighatures

informative

capture information around the point

commensurable

easy to compare across points
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Heat Equation on a Manifold

Heat kernel ki(z,y) :RT x M x M — R

flet) = [ ki(a,y)f(y,0)dy

ki(x,vy) : amount of heat transferred from z to ¥ intime ¢.

ey

t = 0.001 t = 0.02 t =
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Heat Kernel Properties

e Invariant under isometric deformations
If T : X — Yis an isometry then:

I{It(.’L', y) — kt(T(ﬂ?), T(y))

® Robust: ki(x,-) is the probability density function of
Brownian motion on X . Average of all possible paths.

e Multi-Scale:

For a fixed x, as t increases, heat diffuses to larger and
larger neighborhoods.
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Defining a Signature

Let k¢(x,-)be the signature of x at scale ¢.

Has all the properties we want.
Except easy comparison!

kt(x,-) is a function on the entire manifold!
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Heat Kernel Signature (HKS)

Define:

HKS(z,t) = k¢(x, x) sighature of z at scale ¢.

Now HKSs of two points can be easily compared since
they are defined on a common domain (time)

HKS is a restriction of the heat kernel, and thus:
© isometry-invariant
© multi-scale

© robust

Question: How informative is it?
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Heat Kernel Signature (HKS)

Relation to scalar curvature for small ¢:

1 & i 1
ki(z,x) = At Z a;t” ap=1,a1 = EK
i=0
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Informative Theorem

The set of all HKS on the shape almost always defines it
up to isometry!

Theorem: If X and Y are two compact manifolds, such that
A x and Ay have only non-repeating eigenvalues. Then a
homeomorphim 7" : X — Y is an isometry if and only if

HKS(xz) = HKS(T'(z)) V =
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Computing HKS

On a compact manifold:
N
ki(z,y) = Y e igi(x)¢i(y)
i=0
i, @; : i eigen value/function of Laplace-Beltrami operator.

Laplace operator on a mesh is a matrix. Use eigenvalues &
eigenvectors of that matrix.

Once the eigen-decomposition is computed can obtain
HKS at any scale.
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Multiscale Matching

Comparing points through their HKS signatures:

! scale;i HKS
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Multiscale Matching

Comparing points through their HKS signatures:

Medium scale Full scale
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Multiscale Matching

Finding similar points across multiple shapes:

medium scale full scale
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Shared Structure

2D MDS embedding of feature points on 175 shapes
according to distances of their HKS.
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