Global Shape Matching

Section 3.7: Spectral Matching and Applications

Quadratic Assignment Model

Quadratic Assignment

Matrix notation:

$$P^{(match)}(x_1,...,x_n) = \prod_{i=1}^n P_i^{(single)} \prod_{i,j=1}^n P_{i,j}^{(compatible)}$$

$$\log P^{(match)}(x_1,...,x_n) = \sum_{i=1}^n \log P_i^{(single)} + \sum_{i,j=1}^n \log P_{i,j}^{(compatible)}$$

$$= \mathbf{xs} + \mathbf{x}^T \mathbf{Dx}$$

- Quadratic scores are encoded in Matrix D
- Linear scores are encoded in Vector s
- Task: find optimal binary vector x

Spectral Matching

Simple & Effective Approximation:

- Spectral matching [Leordeanu & Hebert 05]
- Form compatibility matrix:

All entries within [0..1]

= [no match...perfect match]

Spectral Matching

Approximate largest clique:

- Compute eigenvector with largest eigenvalue
- Maximizes Rayleigh quotient:

$$\arg\max\frac{\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}}{\left\|\mathbf{x}\right\|^{2}}$$

- "Best yield" for bounded norm
 - The more consistent pairs (rows of 1s), the better
 - Approximates largest clique
- Implementation
 - For example: power iteration

Spectral Matching

Post-processing

- Greedy quantization
 - Select largest remaining entry, set it to 1
 - Set all entries to 0 that are not pairwise consistent with current set
 - Iterate until all entries are quantized

In practice...

- This algorithm turns out to work quite well.
- Very easy to implement
- Limited to (approx.) quadratic assignment model

Simple Numerical Example

Consider matching some points two simple 2D shapes

1. Form compatibility matrix

(Symmetric matrix)

On a rough scale of 0 to 100

- 0 == not compatible
- 100 == very compatible

Diagonal values:

Descriptor match score

Off-diagonal values:

- Pairwise compatibility
- ex) For (1, a) & (2,c) compare
 distance between 1—2 & a—c

Simple Numerical Example

Consider matching some points two simple 2D shapes

2. Compute e-vals / e-vecs

3. Pick best matches, remove constraint violators

One-to-one mapping constraint

Match	Score
(1,a)	125.5
(1,b)	59.5
(1,c)	106.0
(2,a)	56.7
(2,b)	155.8
(2,c)	61.6

Result:

- 1. Take (2,b)
 - Remove (1,b), (2,c), (2,a)
- 2. Take (1,a)
 - Remove (1,c)
- 3. Done!

Spectral Matching Example

Application to Animations

- Feature points:

 Geometric MLS-SIFT

 features [Li et al. 2005]
- Descriptors:
 Curvature & color ring histograms
- Global Filtering:
 Spectral matching
- Pairwise animation matching:
 Low precision passive stereo data

Data courtesy of C. Theobald, MPI Informatik