Symmetry Transforms

Symmetry is everywhere

Symmetry is everywhere

Perfect Symmetry

Blum '64, '67] [Wolter '85] [Minovic '97] [Martinet '05]

Symmetry is everywhere

Local Symmetry

[Blum '78] [Thrun '05] [Simari '06]

Symmetry is everywhere

Partial Symmetry [Zabrodsky '95] [Kazhdan '03]

Perfect Symmetry

Symmetry = 1.0

Local Symmetry

Symmetry = 0.3

Partial Symmetry

Symmetry = 0.2

 $D(f, \gamma) = f \cdot \gamma(f)$

 $D(f,\gamma) = f \cdot \gamma(f)$

Symmetry = 0.1

Kazhdan '03

Thrun '05

Martinet '05

Define the Symmetry Distance of a function f with respect to any transformation γ as the L^2 distance between f and the nearest function invariant to γ

Can show that Symmetry Measure $D(f, \gamma) = f \cdot \gamma(f)$ is related to symmetry distance by

$$D(f,\gamma) = -2SD^2 + \left\|f\right\|^2$$

Zabrodsky '95

Kazhdan '03

Thrun '05

Martinet '05

Zabrodsky '95

Kazhdan '03

Thrun '05

Martinet '05

Baseball: spherical symmetry

Traffi c Cone: two orthogonal plane reflection

Zabrodsky '95

Kazhdan '03

Thrun '05

Martinet '05

Computing Discrete Transform

 $O(n^6)$

Brute Force Convolution Monte-Carlo

O(n³) planes X O(n³) dot product

Computing Discrete Transform

Brute Force Convolution Monte-Carlo

O(n⁶) O(n⁵Log n)

O(n²) normal directions X O(n³ log n) per direction

Computing Discrete Transform

Brute Force $O(n^6)$ Convolution $O(n^5Log n)$ Monte-Carlo $O(n^4)$ For 3D meshes

- Most of the dot product contains zeros.
- Use Monte-Carlo Importance Sampling.

BY

-

Composition of range scans Morphing

Application: Alignment

Results:

Ē

Motivation: Database searching

Query

Database

Result

Observation:

All chairs display similar principal symmetries

Approach: Use Symmetry transform as shape descriptor

Results:

Symmetry provides orthogonal information about models and can therefore be combined with other descriptors

Planar-Reflective Symmetry Transform

Captures degree of reflectional symmetry about all planes

Monte Carlo computation

Applications: alignment, search, completion, segmentation, canonical viewpoints, ...