Markerless Correspondence

Symmetry Detection and Applications

Correspondence Detection

Given two surfaces, find a set of corresponding points.

Mobius Voting

Goal: Find correspondences likely to participate in an

isometry (=geodesic distance preserving)

Method: Use the Möbius group as low DOF model for non-rigid alignment.

Rationale:

- 6 DOF of the Möbius group
- contains perfect isometries

for devising randomized geometric algorithm.

Mobius Transformation

All the global 1-1 and onto conformal map on the sphere.

6 DOF: prescribing three points uniquely defines a Möbius transformation.

Algorithm for Perfect Isometries

3 Correct Correspondences Symmetry: Mobius Voting

3 Correct Correspondences Symmetry: Mobius Voting

Algorithm for Perfect Isometries

Polynomial time (O(N³) triplets) for discovering isometries!

B

Even the same shape in different pose is hardly exactly isometric so single global Möbius is not enough...

Furthermore, we want to compare different (non-isometric) surfaces...

How do we extend to "near isometries?" - with Voting, locality

Key: Uniformization is local

Algorithm Overview

Algorithm Stages

Sampling points

Uniformization

Scoring Votes

Algorithm Stages

Sampling points

- Uniformization
- Scoring Votes

Sampling points

Sample by: 1) Extrema of Gauss curvature (isometry invariant) 2) Uniform samples

Each point represent a surface patch of "equal importance"

Algorithm Stages

Sampling points

Uniformization

Scoring Votes

Uniformization

- Map the surface to space where Möbius is easy to apply and the metric represented by density.
- Every genus-0 surface can be mapped globally to a sphere conformally (angle preserving).

Uniformization

Natural definition of discrete conformal: piecewise similarity

Uniformization

 $\{w_1, w_2, \ldots, w_N\}$

Algorithm Stages

Sampling points

Uniformization

Scoring Votes

Scoring Votes

Scoring Votes

Results

Cross Correspondence

Reference

Mobius Voting for Surface Correspondence, Yaron Lipman, Thomas Funkhouser, SIGGRAPH 2009.

Applications

Symmetry Detection and Applications

Pipe Tree

Random (Castle) Variations

Random (Playground) Variations

Bus Stop Variations

Relations in Man-made Objects

i) orthogonal/parallel relations; equal angle

ii) placement relation, e.g., coplanar, coaxial

iii) equal length/radii relations

Parallel/Orthogonal Relations

$$C_o = \{c_1, c_2, \ldots\}$$

$C_o^* \subset C_o$

Equal Angle Relations

Wheel Dataset

References

A Connection between Partial Symmetry and Inverse Procedural Modeling, Martin Bokeloh, Michael Wand, Hans-Peter Seidel, SIGGRAPH 2010.

GlobFit: Consistently Fitting Primitives by Discovering Global Relations,

Yangyan Li, Xiaokun Wu, Yiorgos Chrysanthou, Andrei Sharf, Daniel Cohen-Or, Niloy J. Mitra,

SIGGRAPH 2011 (conditional accept).