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Overview

* Polygons
e Minkowski Sums

 Decomposing into convex sub-polygons
e Convolution method

» Offsets of polygons

« EXxact representation
e Approximation



What is a polygon?

* we are talking about geometry
* a polygon is a plane figure with at least 3 points

* bounded by a closed path, composed of a finite
sequence of straight line segments

* these segments are called its edges

* the points where two edges meet are the
polygon's vertices



What is a polygon?
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A few polygons (source: wiki)




Properties

 Convex: any line drawn through the polygon
(and not tangent to an edge or corner) meets its
boundary exactly twice.

 Non-convex: a line may be found which meets
its boundary more than twice.

 Simple: the boundary of the polygon does not
cross itself. All convex polygons are simple.

 Concave: Non-convex and simple.



Minkowski Sums

Hermann MlnkOWSkl (1 864'1 909) (adapted by wikipedia)



Minkowski Sums

« We have two 2D polygonal sets A, B € R’

e The Minkowski sum A ® B of this two sets is a
set with the sum of all elements from A and all
elements of B

* AoB=|a+b|acA,beB|



Minkowski Sum of 2 triangles (created with math.player)



Some properties of Minkowski Sums

e associative
e distributive
e commutative

* Minkowski Sum of convex sets results again in
a convex set



Where are Minkowski sums useful?

Computer aided design

Robot motion planning
Computer aided manufacturing
Mathematical morphology

etc.

10



Configuration Space

 Robot B, obstacle A
* Reference point r attached to B
 B'is a copy of B rotated by 180°

« A®@B' is the locus (Linie) of placements of the
point rwhere ANB# 4

* B collides with A when translated along a path,
if r— moved along this path — intersects Ae¢ B’
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Figure 1: Robot and obstacles: a reference point is rigidly attached to the robot on the left-
hand side. The configuration space obstacles and a free translational path for the robot on the
right-hand side.

Adapted by Agarwal
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A

Figure 3: Tight passage: the desired target placement for
the small polygon is inside the inner room defined by the
larger polygon. In the configuration space the only possible
path to achieve this target passes through the line segment
emanating from the hole in the sum on the right-hand side.

Adapted by Flato
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How much effort Minkowski Sums
take?

* Lets say we have different polygonal sets P. Q
with m, n vertices

* PoQ is a portion of the arrangement of mn
segments

 Each segment is the Minkowski sum of a vertex
of P and an edge of Q or the other way around
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How much effort Minkowski Sums
take?

« Size of P®Q is O(m°n®) , same as
computing time worst case

* If both polygons are convex, we have only m+n
vertices and with calculation time of O(m+n)
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How to calculate the Minkowski
Sum ?

We will check two methods here

1. Decomposing into convex sub-polygons
2. Convolution method
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decomposing into convex sub-
polygons

« We Into convex sub-polygons
P, P, ,Psand Q; Q, ,Q,

e Then we calculate PEBQ:U,-,,-(P,@QJ>

* |n theory the choice of decomposition method
does not matter, because even in the worst
case running time will not be affected.

* |n practice this choice has an effect (later).
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Minkowski Sum Algorithm

. : Decompose P into convex sub-polygons
P, P, ,Ps;and Q into the convex sub-polygons

C?1, QZ ’ Qt

« Step 2: For eachi€|1..s|and for each j€|1..t],
compute the Minkowski sub-sum P;® Q; (O(1))
which we denote by R;. We denote by R the set
R;lig[1.s], je[1.t]] — O(m,n)

» Step 3: Construct the union of all polygons in R,
computed in Step 2; the output is represented
as a planar map.
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* Like mentioned before, there are some
algorithms for Decomposition

* Triangulation

* Naive triangulation

- Optimal triangulation (also different methods) — O (n°)
 Convex decomposition with and without Steiner

points — O(r°nlogn)

« Steiner point means additional vertex which is not
part of original signal
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Figure 5: Different decomposition methods applied to the polygon P (leftmost in the figure),
from left to right: naive triangulation, minimum Xd? triangulation and minimum convex de-
composition

Adapted by Agarwal



Minkowski Sum Algorithm

e Calculating the Minkowski sub-sum of the
convex sub-polygons

» A®@B=|a+b|acA,beB|
* Two triangles:
* A={(1,0),(0, 1), (0, -1);
+ B={(0,0),(1,1), (1, -1)}
* Result:

- A+B={(1,0),(2,1),(2,-1),(0, 1), (1, 2), (1, 0),
(0,-1),(1,0), (1, =2);
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Minkowski Sum Algorithm
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Algebraic: Summing the vertices (+ convex hull)

A+B=(5,0), B+B=(10,0), C+B=(5,5), A+D=(8,0),
B+D=(13,0), C+D=(8,5), A+E=(8,3), B+E=(13,3),
C+E=(8,8), A+F=(5,3), B+F=(10,3), C+F=(5,8)
adapted by Korcz
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Outline the sets (adapted by Korcz)
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Minkowski Sum Algorithm

There are several possibilities for step 3:

* Arrangement algorithm

» Construction of the arrangement takes O (/+klogk )
» Traversal stage takes O (/+k) time

k: the overall number of edges of the polygons in R
I the overall number of intersections between edges of polygons in R

* |ncremental union algorithm
. O(k’log°k)
* Divide and Conquer Algorithm

« Combination of above algorithms
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Running time

A = \
{ \
\
| - \ ]

P’s decomposition
naive triang. | min Xd? triang. | min convex
nd 754 530 192
# of convex subpolygons in P 33 33 6
time (mSec) to compute P @ @ 2133 1603 120

Figure 5: Different decomposition methods applied to the polygon P (leftmost in the figure),
from left to right: naive triangulation, minimum Xd? triangulation and minimum convex de-
composition The table illustrates, for each decomposition,
the sum of squares of degrees, the number of convex subpolygons, and the time in milliseconds
to compute the Minkowski sum of P and a convex polygon, (), with 4 vertices.



How to calculate the Minkowski
Sum ?

We will check two methods here:

1. Decomposing into convex sub-polygons
2. Convolution method
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Convolution method

* German word for convolution: Faltung
* geometric convolution

Main ldea:

» Calculating the convolution of the boundaries of

P and Q
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Convolution

Concept of convolutions of general planar tracings
by Guibas:

* Polygonal tracings by interleaved moves and
turns

» Move: translation in a fixed direction
e Turn: rotation at a fixed location
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Convolution

* B, Q with vertices (pO,...me—1) and (%,...an—1)

 Move: traverse a polygon-edge P, P; .

——

* Turn: rotate a polygon vertex p; from p. . p,
0 p; P4

* The polygons are counter-clockwise oriented in
this assumption
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Convolution

Convolution P*Q

» Collection of line segments (Pi+9,)(P;1+4q))

———

who's vector p,p;., lies between q._q; and q,q .

and

» Collection of line segments (p,+q;)(p,+q, )

——

who's vector qjcfj+1 lies between p. . p.and p;p; .,

* P*Q contains at most O(mn) line segments
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Outline the sets (adapted by Korcz)
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Figure 1: Computing the convolution of a convex polygon and a non-convex polygon (left). The
convolution consists of a single self-intersecting cycle, drawn as a sequence of arrows (right). The
winding number associated with each face of the arrangement induced by the segments forming the
cycle appears in brackets. The Minkowski sum of the two polygons is shaded.

Adapted by Wein (!)
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Convolution cycles

* The segments of the convolutions form a
number of closed polygonal curves [Welin]

— convolution cycles
* Three cases:

» Both polygons where convex — convolution is a
polygonal tracing — one cycle, non-intersection

» One were not convex — convolution still contains a
single cycle (maybe not simple) -> one cycle +
Intersection

« Both are not convex — convolution could be
comprised of several cycles — n cycles + x 34



Winding number

* non-negative

* Counting how often the convolution curve winds
In a counter-clockwise direction around the
geometrical face

minus

* Counting how often the convolution curve winds
In a clockwise direction around the geometrical
face

 Maximum {above difference | 0}
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Convolution method

* The Minkowski sum P& Q is the set of points
having a non-zero winding number with respect
to the convolution cycles [Welin]

 Experiments showed, that the convolution
method Is superior to decomposition on almost
cases

* Running times improved by a factor 2-5
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Fork example (adapted by Wein)
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Figure 1: Computing the convolution of a convex polygon and a non-convex polygon (left). The
convolution consists of a single self-intersecting cycle, drawn as a sequence of arrows (right). The
winding number associated with each face of the arrangement induced by the segments forming the
cycle appears in brackets. The Minkowski sum of the two polygons is shaded.

Adapted by Wein
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Figure 2: Computing the convolution of two non-convex octagons (left). The convolution consists of
two cycles (right), one (solid arrows) is comprised of 32 line segments while the other (dashed arrows)
contains 48 line segments, non of which lies on the boundary of the Minkowski sum (shaded).

Adapted by Wein
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Figure 3: A house plan and a star-shaped polygon (left). The Minkowski sum of the two polygons
(right) consists of an antenna and an isolated vertex. For clarity, two copies of the star are drawn using
a dashed line with their center positioned on these features.

Adapted by Wein
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Offsets of polygons



What is an offset?

 Given a set ACR® the r-offset is a super-set of
A: offset(A,r):[pele | d(p,A)<r]:AEBD,

with Minkowski sum A®@B=|a+b|a€A,b €B]
and disk Dr:[pele | d(é,p)<r]
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Offset polygons

« Fundamental task in CAM/CAD

|dea:

» Construction of the Minkowski sum of a polygon
with a disc

* For calculating the Minkowski sums one could
use both seen methods; Wein chooses the
convolution method
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Offset polygons

Construction of the Minkowski sum of a polygon with a disc with different radii (created with
math.player)
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Complexity

* Minkowski sum of two polygonal sets could be
combinatorially complex

» Complexity of the Minkowski sum of a polygon
with n vertices with a disc is always O(n).

e Circles are always convex
« Complexity is caused by polygon

 Difficulty in offsetting polygons is not
combinatorial, it is numerical, therefore

* Doing it exactly or
* Doing it with an approximation (better)
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Offsetting a polygon

 polygon P with n vertices (p,, ..., P, 1)
 Ordered counter-clockwise around P's interior
e All vertices of P have rational coordinates

» Goal: computing the offset polygon P, , the
Minkowski sum of P with a disc of radius r, ris
rational

» Can be done for example by arrangement
package in CGAL
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Offsetting a polygon

P is a convex polygon:

1.Computing the offset by shifting each polygonal
edge by r away from the polygon

2.Results in a collection of n disconnected offset
edges, each pair of adjacent offset edges is
connected by circular arc of radius r, whose
supporting circle is centred at p,

 Running time linear in the size of the polygon
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Offsetting a polygon

P Is a non-convex polygon:

 Done by decomposing into convex sub-
polygons P, ..., P,

 Computing offset of each sub-polygonal
» Calculating the union of these offsets

» Better: using convolution, only one convolution
cycle is needed there — segments + arcs
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Fig. 1. (a) Offsetting a convex polygon. (b) Computing the offset of a non-convex polygon by decomposing it into convex sub-polygons by adding the dashed
diagonal; p is a reflex vertex. The boundary curves of the two sub-offsets induce an arrangement with four faces, whose cover numbers are shown in brackets. (c)

Offsetting a non-convex polygon by computing its convolution with a disc. The convolution cycle induces an arrangement with three faces, whose winding numbers
are shown in brackets.

Adapted by Wein2
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Exact representation of the offset
edges

* Convolution cycle formed by line segments and
circular arcs

» All circular arcs are supported by rational
circles, as their centre points (polygonal
vertices) always have rational coordinates and
their radii equal re@ [WeinZ]

* Problem: the coordinates of the vertices of the
offset of a rational polygonal set by a rational
radius r are in general irrational [Wein2]
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Problem

* To get the coordinates of the new segment
points quadratic equations with rational
coefficients are solved

« But the new segment between these points is
supported by a line of irrational coefficients

* |f the supporting line of points
p,p,Iis ax+by+c=0 where a,b,c €Q |

then the line supporting p, p, is ax+by+(c+Ir)=0
where | Is an irrational number
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Problem

» Offset edges can not be realised as segments
of lines with rational coefficients

* Not representable by rational circles and
segments
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Conic curve

* Another more simple representation of offset
edges

 Based on the fact that the locus of all points
lying at distance r from the line ax+by+c =0

(ax+by+c) _
2 2 =r
a-—+b
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the offset polygon

Problem:

* Exact computation leads to computational
overhead

Remedy:

« Staying in exact rational arithmetic with rational
lines, circles and arcs by using one-root
numbers

» Using an algorithm which only uses rational
arithmetic
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one-root number

The solution of ax*+bx+c=0, with a,b,ceQ,c>0
IS oW a one-root number

x+ By, with «, 8, yeQ,y=0

 Ability to compare two such numbers in an
exact manner

* Important property: operations of evaluating the
sign of a one-root number and comparing two
one-root numbers can be carried out precisely
using only exact rational arithmetic [Wein2]
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one-root number

With properties of one-root numbers:
* Robust implementation possible

 Geometric predicates and constructions needed
for the arrangement construction and
maintenance are using only exactly rational
arithmetic
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Remedy

* Approximation algorithm that avoids using
expensive computation with algebraic numbers
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Approximation scheme

e for a horizontal edge (y,=y,) or a vertical edge
(x,=x,) its length [ is a rational number [Wein2]

» Construction of the offset edge possible in exact
manner

o Still left: (y,#y,) and (x,#Xx,)
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Approximation scheme

* Approximating the offset edge by two line
segments by finding two points v', and v ', with
rational coefficients

» v'; shall lie on the circle (x—x;)*+(y—y,)°=r"
forj=1, 2

* To accomplish this we are ,pushing the roof”
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Fig. 2. Approximating the offset edge induced by the polygon edge p| p»>.

Adapted by Wein2
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Summary

 Minkowski Sums

 Decomposing and Convolution

» Convolution also usable in offset polygons
* Exact representation

* Approximation scheme

61



Content based on

« [Agarwal] Polygonal Decomposition for Efficient Construction of
Minkowski Sums

» [Flato] Robust and Efficient Construction of Planar Minkowski
Sums

« [Wein] Exact and Efficient Construction of Planar Minkowski
Sums using the Convolution Method

» [Wein2] Exact and approximate construction of offset polygons
« [LaValle] Planning Algorithms

 [Pallaschke] Bruchrechnung mit konvexen Mengen

* [Korcz] Visualisierung der Rechnungen auf konvexen Mengen

* Few hints from my advisor and wikipedia
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