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1 The Ellipsoid Method

Khachian showed in 1979 that linear programming can be solved in polynomial time. We con-
sider LPs in inequality form:

max
{

cTx; Ax≤ b
}

(LP)

The entries ofA, c, andb are assumed to be integral. The ellipsoid method is about testing
feasibility. Optimization is done by binary search on the objective function value, i.e., we test
feasibility of the following LP

cTx≥ c0 and Ax≤ b (1)

for suitably chosen constantsc0. More precisely, we compute an upper and a lower bound on the
optimum objective value and then perform binary search on this interval.

The ellipsoid method is of limited practical value. Although its running time is polynomial,
it is usually outperformed by the Simplex algorithm and alsoby interior point methods (another
polynomial time algorithm for linear programming). The ellipsoid method is of great theoretical
value as is can also be applied to implicitly defined LPs. In such LPs, the constraints are not given
explicitly, but there is an algorithm (usually called, the “separation oracle”) that tells whether a
pointzsatisfies all inequalities or not. In the latter case, it alsoreturns a violated inequality.

This section is organized as follows. In Section 1.1 we introduce the Ellipsoid method and in
Section 1.3 we discuss an application to an LP with exponentially many constraints. Sections 1.4
and 1.5 build intuition; we discuss the Ellipsoid method in one and two dimensions. In the one-
dimensional case, the method is tantamount to binary search. In two-dimensions, the ellipsoid
comes into play.

1.1 The Principle

We discuss how to decide feasibility of a system

Ax≤ b. (LP)

The entries ofA andb are assumed to be integral. LetC be the maximum absolute value of any
entry ofA andb and letL = n(1+ logn+ logC). Then 2L = (2nC)n.

Theorem 1 The Ellipsoid method solves linear programs in time polynomial in L.
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Algorithm 1 The Ellipsoid Method

initialize E to the ball with radius 4nL centered at the origin. {S⊆ E}
while vol(E) ≥ 2−(n+1)L do

if the centerz of E is feasible, stop and declare the problem feasible.
select an inequalityaix≤ bi violated byz, i.e.,aT

i z> bi .
{for every pointx∈ S, we haveaT

i x≤ bi ≤ aT
i z.}

consider the “half-ellipsoid”(1/2)E = E ∩
{

x; aT
i x≤ aT

i z
}

which is the intersection of
E with a half-space whose boundary passes throughz and replaceE by the smallest (in
volume) ellipsoid containing(1/2)E. {S⊆ E}

end while
stop and declare the problem infeasible.

We show how to decide whether the feasible set is empty and howto find a feasible point if
there is one under the following additional assumption:the set of feasible points inside the ball
of radius4nL centered at the origin, has volume at least2−(n+1)L. We will justify this assumption
later.

In the sequel we useS to denote the set of feasible solutions inside the ball of radius 4nL

centered at the origin. ThenS is either empty or has volume at least 2−(n+1)L.
The Ellipsoid method is a generalization of binary search. In binary search we maintain an

interval that contains the solution. In each iteration, we test whether the midpoint of the interval
is a solution. If not, we proceed with one of two half-intervals. The Ellipsoid method generalizes
this strategy to arbitrary dimensions. The proper generalization of intervals are ellipsoids.

An ellipsoidE in R
n consists of all pointsx∈ R

n satisfying an inequality of the form

(x−z)TQ(x−z) ≤ 1

wherez∈R
n is the center of the ellipsoid andQ is anyn×n positive definite matrix1. ForQ= I ,

we have the unit ball centered atz, for Q = diag(a1, . . . ,an) with ai > 0 for all i, we have an
ellipsoid with centerz and axes of length 1/

√
ai. An ellipsoid can also be viewed as the image

of the unit ball under the affine transformationx 7→ R(x−z). A one-dimensional ellipsoid is an
interval.

The ellipsoid method maintains an ellipsoidE that is known to containS; E is initialized to
the ball with radius 4nL centered at the origin. In each iteration, we first check the volume of
E. If the volume ofE is smaller than 2−(n+1)L, S is empty and we stop. Otherwise, we consider
the centerz of E. If z is feasible, we have found a feasible point and stop. Ifz is infeasible, it
violates at least one of the inequalities definingS, sayaT

i z> bi . Since the points inSsatisfy this
inequality, we haveaT

i x≤ bi < aiz for all x∈ S. Thus

S⊆ (1/2)E :=E∩
{

x; aT
i x≤ aT

i z
}

.

1A matrix Q is positive definite if for any nonzero vectory, one hasyTQy> 0. Positive definite matrices have
“roots”, i.e., there is a matrixR such thatQ = RTR. In fact, a matrix is positive definite if there is a non-singular
matrixRsuch thatQ = RTR.
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(1/2)E is the intersection ofE with a half-space whose boundary containsz, see Figure 1. We
replaceE by the smallest ellipsoid containing(1/2)E.

What is the smallest ellipsoid, call itE′, containing(1/2)E? Let us consider a special case:
E is the unit ball and the half-space isx1 ≤ 0, see Figure 2.

Lemma 1 Let E be the unit ball. Then

E∩{x; x1 ≤ 0} ⊆ E′ :=

{

x;

(

n+1
n

)2(

x1 +
1

n+1

)2

+
n2−1

n2 ∑
2≤i≤n

x2
i ≤ 1

}

.

Moreover,
vol(E′)
vol(e)

≤ e−1/(2n+2).

Observe that E′ has its center at(1/(n+1),0,0, . . . ,0). It passes through the point(−1,0, . . . ,0)
and the points(0,x2, . . . ,xn) with ∑2≤i≤nx2

i = 1.

Proof: Consider anyx with ∑1≤i≤nx2
i ≤ 1 andx1 ≤ 0. Then

(

n+1
n

)2(

x1 +
1

n+1

)2

+
n2−1

n2 ∑
2≤i≤n

x2
i

=

(

n+1
n

)2(

x2
1 +

2
n+1

x1 +
1

(n+1)2

)

+
n2−1

n2 ∑
2≤i≤n

x2
i

=
1
n2

(

(2n+2)x2
1+(2n+2)x1+1+(n2−1) ∑

1≤i≤n

x2
i

)

≤ 1
n2

(

(2n+2)x1(x1+1)+1+(n2−1)
)

≤ 1,

where the next to last inequality follows from∑i x
2
i ≤ 1 and the last inequality follows from

x2
1 +x1 ≤ 0 for −1≤ x1 ≤ 0. We have now shown thatE∩{x; x1 ≤ 0} ⊆ E′. We will not show

thatE′ is the smallest ellipsoid with this property. In Section 1.5you can find the argument in
the two-dimensional situation.

We next turn to the volume bound. The volume of a ellipsoid is proportional to the product
of the lengths of its axes. All axes ofE have length one andE′ has one axis of lengthn

n+1 and
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n−1 axes of length
√

n2

n2−1
. Thus

vol(E′)
vol(E)

=
n

n+1

(

n2

n2−1

)(n−1)/2

= exp

(

ln(1− 1
n+1

)+
n−1

2
· ln(1+

1
n2−1

)

)

≤ exp

(

− 1
n+1

+
n−1

2
1

n2−1

)

= exp

(

− 1
n+1

+
1

2(n+1)

)

= e−1/(2n+2),

where the inequality follows from ln(1+s) ≤ s for −1 < s.

How can we deal with the case of an arbitrary ellipseE? We can derive the equations forE′

as follows:

1. translate space so thatz is moved into the origin.

2. rotate space such that the axes ofE become aligned with the coordinate axes.

3. scale the coordinates such thatE becomes the unit ball

4. at this point the boundary ofH is an arbitrary hyperplane through the origin, rotate space
again so as to turnH into the half-spacex1 ≤ 0.

5. at this point we are in our special situation and hence knowE′.

6. apply steps 1 to 5 in reverse order toE′.

A nice fact about the transformations used in steps 1 to 5 is that, although they change vol-
umes, they do not change the ratio of volumes and hence the bound on the ratio of the volume of
E andE′ derived above stays true.

Lemma 2 In every iteration, the volume of E shrinks by at least the factor

f = exp(− 1
2n+2

) < 1 .

The polynomiality of the method follows easily. We start with an ellipsoid whose volume is
bounded by 8n

2L. Observe that the ball with radius 4nL fits into the box with side length 2·4nL

and hence its volume is bounded by(8nL)n = 8n2L.
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In each iteration the volume shrinks by a factorf and hence the volume of the ellipsoid after
k iterations is at mostf k ·8n2L. We stop, if the volume goes below 2−(n+1)L. Thus if we enter
iterationk+1, we must havef k8n2L ≥ 2−(n+1)L or k log f +3n2L ≥−(n+1)L or

k≤ −(n+1)L−3n2L
log f

= O(n3L).

One remark is needed at this point. The formulae for updatingthe ellipsoid involve additions,
multiplications, divisions, and roots. We have to carry them out with finite precision. It can
be shown the the claims above stay essentially true, if all calculations are carried out with 8L

bits of precision. This proves Theorem 1 (modulo the unproven assumptions). We turn to the
assumptions.

1.2 Details

We sketch how to guarantee the minimum volume assumption andhow to reduce optimization
to feasibility testing.

Minimum Volume: The solution toAx≤ b might be a single point. In the Ellipsoid method
one argues about the volume of the set of solutions and hence we want the situation that either
there is no solution or that the solution set has a certain minimum volume. This is easy to achieve
by perturbation. We need a Lemma about solutions to linear systems.

Lemma 3 Consider a system Ax= b with non-singular A and dimension n. Assume that all
entries are integral bounded by C in absolute value. Then theentries of A−1b are rational
numbers whose numerator and denominator are bounded by nnCn.

Proof: By Cramer’s rule, thej-th coordinate ofx is (up to sign) equal to

detA′

detA
,

whereA′ is obtained fromA by replacing thej-th column byb. The value of the determinant is
a sum ofn! terms, each bounded byCn. Finally,n! ≤ nn.

Lemma 4 (Minimum Volume and Localization) Let ε = 1/(2n(nC)n).

• Ax≤ b is feasible if and only if Ax≤ b+ ε1 is feasible (1 is the vector of ones).

• If the latter problem is feasible, the set of solutions inside the ball with radius4nL centered
at the origin, has volume at least2−(n+1)L.
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Proof: I want to give a feeling why this might be true. Clearly, ifAx≤ b is feasible, then the
perturbed system is feasible.

If Ax≤ b is not feasible, then there is ay≥ 0 such thatyTA= 0 andyTb=−1 (this is Farkas’
Lemma). In other words, the LP

minimize 1Ty subject toy≥ 0, yTA = 0, yTb = −1

is feasible. Since basic solutions of LPs are solutions to linear system, Lemma 3 gives us a bound
on the coordinates of a solutiony; their absolute value is bounded bynnCn.

Next consider the perturbed system and observe that

yT(b+ ε1) ≤−1+n(nC)nε ≤−1/2.

Thusy proves the infeasibility of the perturbed system. Assume tothe contrary that there is anx
with Ax≤ b+ε1. Multiplying this inequality byyT from the left yields 0≤ yT(b+ε1)≤−1/2,
a contradiction.

For the second part, assume feasibility of the perturbed system. Then the original system is
feasible and has a solutionx well inside the ball of radius 4nL (there is a feasible point whose
coordinates are bounded by(nC)n and(nC)n ≪ 4nL). Consider anyx′ whose coordinates differ
from the coordinates ofx by at mostδ . Then

Ax′ = Ax+A(x′−x) ≤ b+δnC1≤ b+ ε1

whereδ is such thatnCδ = ε. Thus the feasible region of the perturbed system contains acube
of side length 2δ and the volume bound follows (since(2δ )n ≥ 2−(n+1)L.

Feasibility and Optimization: We argue that if one can decide feasibility of LPs in polynomial
time then one can compute optimal solutions in polynomial time. We first show how to deal with
unbounded LPs and then how to deal with bounded LPs.

An LP is unbounded if and only if it and the “companion LP” max
{

0; Ax≤ 0,cTx≥ 1
}

are
feasible. Thus we can decide unboundedness if we can decide feasibility. Observe first that if
both problems are feasible, say with feasible solutionsx∗0 andx∗1, thenx∗0 + tx∗1 is feasible for the
original problem for anyt ≥ 0. The objective value grows without bounds. Conversely, ifthe LP
is unbounded, the simplex algorithm yieldsx∗0 andx∗1 such thatx∗0 + tx∗1 is feasible for anyt ≥ 0
and the objective functions grows as a function oft. For t = 0, we conclude thatx∗0 is feasible
for LP. The fact thatx∗0 + tx∗1 is feasible for every positivet impliesAx∗1 ≤ 0 and the fact that the
objective function grows without bounds impliesAx∗1 > 0.

For a bounded LP, Lemma 3 tells us that the coordinates of the optimal solution are bounded
by (nC)n. Thus the objective value is bounded in absolute value byM :=nC(nC)n. We use binary
search on the interval[−M,+M] to determine the optimal objective value. Any search step isa
feasibility test of an LP of the form

cTx≤ c0 Ax≤ b.
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When can we stop the search. Letx andx′ be two distinct vertices of the feasible set and
assumecTx 6= cTx′. Then

cT(x−x′) ≥ 1
(nC)2n

sincex− x′ is a vector of rationals with denominator at least(nC)2n and the entries ofc are
integral.

Thus we can stop the search after

log(2M · (nC)2n) = O(LO(1)

iterations.

Summary: The ellipsoid method is not a practical method. However, itstheoretical interest is
immense.

• First, it shows that linear programming is a polynomial timeproblem.

• Second, it shows that it suffices to have a “separation oracle” for solving LPs. A separation
oracle takes a pointz and tells whetherz is feasible. Ifz is infeasible it also provides a
violated inequality. Observe that a separation oracle is all that is needed in step 4.

1.3 An Application: The Subtour Elimination LP

Let G = (V,E) be an undirected graph and letc : E → R≥0 be a non-negative weight function on
the edges ofG. The following integer linear program solves the TravelingSalesman Problem on
G. We have a variablexe associated with each edgeeof G. The variables are constrained to have
values 0 or 1. The intended meaning is that the edgesewith xe = 1 form the Traveling Salesman
Tour. Every tour must use exactly two of the edges incident toany vertex, i.e.,

∑
e∈δ (v)

xe = 2 for eachv∈V (2)

whereδ (v) is the set of edges incident tov. For a setSof vertices, letδ (S) be the set of edges
having exactly one endpoint inS. Then

∑
e∈δ (S)

xe ≥ 2 for eachS⊆V with /0 6= S 6= V. (3)

Lemma 5 The zero-one solutions of (2) and (3) are precisely the Traveling Salesman tours.

Proof: A tour uses exactly two edges incident to every vertex. Moreover, for every setS of
vertices with /06= S 6= V at least two edges of the tour have exactly one endpoint inS.

Conversely, consider a zero-one solution and letX be the set of edges withxe = 1. SinceX
contains exactly two edges incident to every vertex, the edges inX form a set of disjoint cycles.
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Assume that there is more than one cycle. LetS be the vertex set of one of the cycles. Then
∑e∈δ (S) xe = 0, a contradiction to (3).

The constraints in (2) are calleddegree constraintsand the constraints in (3) are called
subtour-elimination constraints. Of course, the goal is to minimize the total cost of the edgesin
the tour, i.e.,

minimize ∑
e

cexe.

We next relax the conditionxe ∈ {0,1} to 0≤ xe ≤ 1. We obtain an LP. There are 2n degree
constraints and 2n−2 subtour elimination constraints. We show how to solve thisLP with the
Ellipsoid method in polynomial time.

Assume that the edge costsce are integers in the range from 0 toC. Then the objective value
of the LP lies between 0 andnL; the objective value of the LP is not necessarily integral. We
want to find the smallest integerc0 such that the LP

∑
e

cexe≤ c0 and 0≤ xe≤ 1 and(2) and(3)

is feasible. Thenc0 is a lower bound for the ILP. We use the Ellipsoid method.
We can start with a ball of radiusm, since we havemvariables bounded by one.2 Let zbe the

center of the current ellipsoid. We check the constraints

∑
e

cexe ≤ c0 and 0≤ xe ≤ 1 and(2)

by substitutingz for x. We check the subtour-elimination constraints algorithmically.
We set up an auxiliary graphG′. G′ is isomorphic toG; the weight of edgee is equal toze (=

the entry of the vectorz indexed bye). We compute a minimum edge cut3 in G′. If the value of
this cut is less than two, it gives us a violated subtour-elimination constraint. If the value of this
cut is equal to two (why can it be no larger than two?), there isno violated subtour-elimination
constraint.

The result of this section is remarkable. We have an LP withm variables, one for each edge.
Hence the optimal solution is defined bym of the constraints. Which constraints are relevant is
determined by the edge weights. There are exponentially many subtour-elimination constraints.
The ellipsoid method finds the relevant constraints in polynomial time without inspecting all of
the constraints.

1.4 Binary Search

We start with a one-dimensional problem. Consider the following situation.

2Argue that one can start with a ball of radiusn.
3The pedestrian way of solving a min-cut problem is to iterateover all pairs(a,b) of distinct vertices ofG′. For

each pair one computes the minimum(a,b)-cut by a max-flow computation with sourcea and sinkb. There are
more efficient algorithms known [SW97, KS96]. For an implementation see [MN99].
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• The goal is to find anx∈R having a certain propertyP or to tell that nox∈ Rhas property
P.

In the application to linear programming:x has propertyP if it satisfies (1).

• We know that the setS of x having propertyP is either empty or an interval of length at
leastℓ.

In the application to linear programming: the set of feasiblex is either empty or is a convex
set of volume at leastℓ. A convex set in one dimension is an interval.

• We know that the absolute value of anyx with propertyP is bounded byU .

In the application to linear programming: the feasible set is contained in a ball of radiusU .

• Given anx∈ R we can test whetherx has propertyP. If x does not have propertyP, either
S⊆ [−∞ ..x] or S⊆ [x.. +∞]. This follows from the fact thatS is an interval. We can tell
which of the two cases applies4.

In the application to linear programming: eitherx satisfies all inequalities or we can find
an inequality violated byx.

The problem just described can be solved by binary search.

1. Initialize an intervalI to [−U ..U ]. ThenS⊆ I . In the course of the algorithm we will
shrinkI and maintain the invariantS⊆ I .

2. If the length ofI is less thanℓ, we stop and declare that there is nox with propertyP. This
is correct, sinceS⊆ I by our invariant and since a nonemptyShas a length of at leastℓ.
Thus if the length ofI is less thanℓ, Smust be empty.

3. So assume that the length ofI is larger thanℓ. Let z be the midpoint ofI . If z has property
P, we stop.

4. Otherwise, we replaceI by either the left half or the right half ofI and continue with step
2. We exclude the half which is known to contain no point inS and hence the invariant
S⊆ I is maintained.

We have already argued correctness of our method. Let us nextbound the number of iterations.
After k executions of step four the length ofI is 2−k2U , since we start with an interval of length
2U and since every execution of step four halves the length of the interval.

Assume that the loop body is executedk+ 2 times, i.e., in thek+ 2-nd iteration we stop in
either step 2 or step 3. Since we did not stop in iterationk+1, the length ofI at the beginning of
thek+1-st iteration (=end ofk-th iteration) is at leastℓ. Thus 2−k(2U) ≥ ℓ or k≤ log((2U)/ℓ).

4This item is usually called aseparation oracle: the word oracle emphasizes that, at least for the purposes of the
current discussion, it is irrelevant how the decision is made, separation indicates that the decision separatesz from
S.
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Theorem 2 Binary search solves the search problem described above with at most

2+ log
2U
ℓ

iterations.

Proof: by the preceding discussion.

Before we generalize to higher dimensions, we observe that it is not really important that
the length ofI is halved in every iteration. Any reduction by a constant factor f < 1 would do.
Assume the length ofI is reduced by a factorf < 1 in every iteration. Then the last paragraph
has to be changed to:

Assume that the loop body is executedk+ 2 times, i.e., in thek+ 2-nd iteration we stop
in either step 2 or step 3. Since we did not stop in iterationk + 1, the length ofI at the
beginning of thek+ 1-st iteration (=end ofk-th iteration) is at leastℓ. Thus f k(2U) ≥ ℓ or

k≤ log1/ f ((2U)/ℓ) =
log((2U)/ℓ)

log(1/ f ) . Thus only the basis of the log-function changes.

1.5 The Ellipsoid Method in Two Dimension

The ellipsoid method generalizes binary search to higher dimension. We discuss the general-
ization to two dimensions. Let us first generalize our searchproblem. Consider the following
situation.

• The goal is to find anx ∈ R
2 having a certain propertyP or to tell that nox ∈ R2 has

propertyP.

In the application to linear programming:x has propertyP if it satisfies (1).

• (Minimum Area) We know that the setSof x having propertyP is either empty or a convex
set of area at leastℓ.

In the application to linear programming: the set of feasiblex is either empty or has volume
at leastℓ.

• (Localization) We know that anyx with propertyP is contained in a disk with radiusU
centered at the origin.

In the application to linear programming: the feasible set is contained in a ball of radiusU .

• (Separation Oracle) Given anx∈ R
2 we can test whetherx has propertyP. If x does not

have propertyP, there is a linel passing throughx such one of the (open) half-spaces
defined byl contains no point inS. This follows from the fact thatSis convex. We assume
that we can determine such a line and the empty open half-space (equivalently, the closed
half-spaceH with boundaryl and containingS)

In the application to linear programming: eitherx satisfies all inequalities or we can find
one which is violated byx.
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How can we generalize binary search? What is the proper generalization of the intervalI which is
known to containS? Khachian showed that ellipses work. This leads to the following algorithm.

1. InitializeE to the disk with radiusU centered at the origin. ThenS⊆ E. In the course of
the algorithm we will shrinkE and maintain the invariants that

• E is an ellipse

• E containsS.

2. If the area ofE is less thanℓ, we stop and declare that there is nox with propertyP. This
is correct, sinceS⊆ I by our invariant and a non-emptyShas an area of at leastℓ. Thus if
the area ofE is less thanℓ, Smust be empty.

3. So assume that the area ofE is larger thanℓ. Let z be the center ofE. If z has propertyP,
we stop.

4. Otherwise, by our assumption, we can determine a closed half-plane H havingz in its
boundary and containingS. Define(1/2)E as the intersection ofE andH. ThenS⊆
(1/2)E and the area of(1/2)E is one-half the area ofE.

Unfortunately,(1/2)E is not an ellipsoid. Here is where the ellipsoid method goes beyond
binary search. In binary search(1/2)I is an interval and hence we immediately proceed to
the next iteration. In the ellipsoid method we need one further step.

SetE to the smallest (in area) ellipse containing(1/2)E, see Figure 1.

Clearly, if the method terminates, it terminates with the correct answer. The key for the termina-
tion proof and the running time analysis is to show that the area ofE is multiplied by a factorf
less than one in every iteration.

How can we determine the smallest ellipsoid containing(1/2)E? Let us start with a par-
ticularly simple situation, see Figure 2:E is a unit disk centered at the origin andH is the left
half-plane.

The figure suggests to use an ellipseE′ that has its center on the negativex-axis, passes
through points(−1,0), (0,1) and(0,−1), and has axes parallel to the coordinate axes. Thus

E′ =
{

(x,y) ∈ R2; ((x−c)/a)2+(y/b)2 ≤ 1
}

for appropriate constantsa, b, andc.

Lemma 6 For c=−1/3, a= 2/3, and b= 2/
√

3, the ellipsoid E′ defined above contains E∩H.
Moreover,

area(E′)
area(E)

=
(2/3)2
√

1/3
=

4
√

3
9

≤ 0.8

and E′ is the smallest ellipse (in area) containing E∩H.
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z

H

E

(1/2)E

Enew

Figure 1: The figure shows an ellipseE, and a halfspaceH havingz, the center ofE, on its
boundary;(1/2)E is the intersection ofE andH. Enewis an ellipsoid containing(1/2)E. It is
not the smallest such ellipsoid (my mastering of xfig did not suffice for this purpose).

(0,1)

(0,-1)

(-1,0)

E

E’

Figure 2: E is the unit disk andH is the left half-plane. The figure suggests that the smallest
ellipseE′ containingE∩H has its center on the negativex-axis, passes through points(−1,0),
(0,1) and(0,−1), and has axes parallel to the coordinate axes.

Proof:
We have−1≤ c≤ 0 anda andb are the length of the axes of our ellipse,a > 0 andb > 0.

The area ofE′ is πab and we are going to choosea andb such that the area is minimal. Since
(−1,0) lies on the boundary ofE′, the length of the horizontal axis is 1+ c. Thusa = 1+ c.
We must clearly have 2a ≥ 1. Thus−1/2 ≤ c ≤ 0. Since(0,1) lies on the boundary ofE′ we
have(c/(1+c))2 +(1/b)2 = 1. Thus(1/b)2 = 1− (c/(1+c))2 = ((1+c)2−c2)/(1+c)2 and
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henceb = (1+c)/
√

1+2c. At this point, we are left with a single parameterc. For anyc with
−1/2 < c≤ 0, the formulae above determinea andb.

The area ofE′ is πab= π(1+c)2/
√

1+2c. Forc = 0, E′ is equal toE and the area is equal
to π , the area of the unit disk. Forc = −0.1, the area ofE′ is π0.92/

√
0.8≈ 0.9π and hence the

area ofE′ is only 90% of the area ofE. We can do even better, but there is actually no need to
do so. Already at this point, we know that the number of iterations is logarithmic inU/ℓ.

The area is minimized5 for c = −1/3. Then

area(E′)
area(E)

=
(2/3)2
√

1/3
=

4
√

3
9

≤ 0.8 .

The center ofE′ is at (−1/3,0) and the axes have length 2/3 and 2/
√

3 respectively. Thus
1/a2 = 9/4 and 1/b2 = 3/4.

We still need to verify thatE′ containsE∩H. So let(x,y) be arbitrary withx2 +y2 ≤ 1 and
x≤ 0. Then

(x−c)2

a2 +
y2

b2 =
9
4
(x+

1
3
)2+

3
4

y2 =
6
4

x2 +
3
2

x+
1
4

+
3
4
(x2 +y2) ≤ 3

2
x2 +

3
2

x+1≤ 1 .

The next to last inequality follows fromx2+y2 ≤ 1 and the last inequality follows fromx2+x≤ 0
for −1≤ x≤ 0.

How can we deal with the case of an arbitrary ellipseE? We can derive the equations forE′

as follows:

1. translate space so thatz is moved into the origin.

2. rotate the plane such that the axes ofE become aligned with the coordinate axes.

3. scalex andy-coordinates such thatE becomes the unit disk

4. at this point the boundary ofH is an arbitrary line through the origin, rotate space again so
as to turnH into the left half-plane.

5. at this point we are in our special situation and hence knowE′.

6. apply steps 1 to 5 in reverse order toE′.

A nice fact about the transformations used in steps 1 to 5 is that, although they change vol-
umes they do not change the ratio of volumes and hence the bound on the ratio of the volume of
E andE′ derived above stays true.

5The derivative of(1+c)2/
√

(1+2c) with respect toc is 2(1+c)(1+c)−1/2− (1+c)2(1+2c)−3/2 = (2(1+

c)(1+ 2c)− (1+ c)2)(1+ 2c)−3/2 = (1+ c)(2(1+ 2c)− (1+ c))(1+ 2c)−3/2. We have maxima forc = −1 (an
illegal value) and 2+4c−1−c= 0 or 3c = −1 orc = −1/3.
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Theorem 3 The ellipsoid method solves the two-dimensional search problem with at most

2+ log1/ f
4U2

ℓ
= 2+

log(4U2/ℓ)

log(9/(4
√

3))

iterations; f = 4
√

3/9.

Proof: We start with the disk of radiusU centered at the origin. Its area isπU2 ≤ 4U2. We
terminate when the area is smaller thanℓ and we reduce the area by a factorf = 4

√
3/9 in every

iteration. Therefore the number of iterations is at most what is stated in the theorem.
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