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Abstract

We introduce an exact subdivision algorithm CEVAL for isolating complex roots of
a square-free polynomial. The subdivision predicates are based on evaluating the
original polynomial or its derivatives, and hence is easy to implement. It can be seen
as a generalization of a previous real root isolation algorithm called EVAL. Under
suitable conditions, the algorithm is applicable for general analytic functions.

We provide a complexity analysis of our algorithm on the benchmark problem
of isolating all complex roots of a square-free polynomial with Gaussian integer
coefficients. The analysis is based on a novel technique called δ-clusters. This anal-
ysis shows, somewhat surprisingly, that the simple EVAL algorithm matches (up
to logarithmic factors) the bit complexity bounds of current practical exact algo-
rithms such as those based on Descartes, Continued Fraction or Sturm methods.
Furthermore, the more general CEVAL also achieves the same complexity.
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1 Introduction

Root finding might be called the Fundamental Problem of Algebra, after the
Fundamental Theorem of Algebra [39,41,44]. The literature on root finding is
extremely rich, with a large classical literature. The work of Schönhage [39]
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marks the beginning of complexity-theoretic approaches to the Fundamental
Problem. Pan [33] provides a history of root-finding from the complexity view
point; see McNamee [22] for a general bibliography. The root finding problem
can be studied as two distinct problems: root isolation and root refinement. In
the complexity literature, the main focus is on what we call the benchmark

problem, that is, isolating all the complex roots of a polynomial f of degree n
with integer coefficients of at most L bits. Let T (n, L) denote the (worst case)
bit complexity of this problem. There are three variations on this benchmark
problem:

• We can ask for only the real roots. Special techniques apply in this important
case [7,16]. E.g., Sturm [20,37,9], Descartes [5,38,27,12,10], and continued
fraction methods [1,40].
• We can seek the arithmetic complexity of this problem, that is, we seek to

optimize the number TA(n, L) of arithmetic operations.
• We can add another parameter p > 0, and instead of isolation, we may seek

to approximate each of the roots to p relative or absolute bits.

Schönhage achieved a bound of T (n, L) = Õ(n3L) for the benchmark iso-
lation problem where Õ indicates the omission of logarithmic factors. This
bound has essentially remained intact. Pan and others [33,29] have given
theoretical improvements in the sense of achieving TA(n, L) = Õ(n2L) and
T (n, L) = TA(n, L) · Õ(n), thus achieving record bounds in both bit com-
plexity and arithmetic complexity. Theoretical algorithms designed to achieve
record bounds for the benchmark problem have so far not been used in prac-
tice. Moreover, the benchmark problem is inappropriate for some applications.
For instance, we may only be interested in the first positive root (as in ray
shooting in computer graphics), or the roots in some limited neighborhood.
In the numerical literature, there are many algorithms that are widely used
and effective in practice but lack a guarantee on the global behavior (cf. [33]
for discussion). Some “global methods” such as the Weierstrass or Durant-
Kerner method that simultaneously approximates all roots seem ideal for the
benchmark problem and work well in practice, but their convergence and/or
complexity analysis are open. Thus, the benchmark complexity, despite its the-
oretical usefulness, has limitation as sole criterion in evaluating the usefulness
of root isolation algorithms.

There are two sources of literature on “practical” root isolation algorithms: (1)
One is the exact computation literature, providing algorithms used in various
algebraic applications and computer algebra systems. Such exact algorithms
have a well-developed complexity analysis and there is considerable computa-
tional experience especially in the context of cylindrical algebraic decompo-
sition. The favored root isolation algorithms here, applied to the benchmark
problem, tend to lag behind the theoretical algorithms by a factor of nL. Nev-
ertheless, current experimental data justify their use [38,16]. (2) The other
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is the numerical literature, mentioned above. Although numerical algorithms
traditionally lack any exactness guarantees, they have many advantages that
practitioners intuitively understand: compared to algebraic methods, they are
easier to implement and their complexity is more adaptive. Hence, there is
a growing interest to constructing numerical algorithms that are exact and
efficient. This paper is a contribution along this line.

1.1 The Subdivision Approach

Among the practical exact root isolation algorithms, the subdivision paradigm
is perhaps the most widely used. This paradigm is a generalization of binary
search in which we begin with a domain (say a box B0 ⊆ C) and recursively
subdivide the boxes to search for roots. Unlike the theoretical algorithms or
global methods above, subdivision algorithms have a strong advantage of be-
ing “local” as they can restrict computational effort only to the given initial
box B0, in order to find roots near B0. If there are few or no roots in B0,
such methods can terminate quickly. The “subdivision” terminology derives
from the use of such algorithms in meshing curves and surfaces [21]; root iso-
lation is just meshing in 1-D. The principle action of subdivision algorithms
is the subdivision phase that operates on a queue Q containing subboxes
of B0. Initially, Q = {B0}. In each iteration, a box B is removed from Q and
tested with an exclusion predicate Cout and an inclusion predicate Cin.
If Cout(B) holds, B is discarded; if Cin(B) holds, then B is output. Otherwise,
we subdivide B into four children boxes and put them back into Q. For root
isolation, Cout(B) guarantees that B has no zeros, and Cin(B) guarantees that
there is a unique zero in B. For real roots, we would use intervals instead of
boxes. The general structure of many subdivision algorithms is fairly simple;
in [21], the “generic subdivision algorithm” is viewed as a sequence of four
phases: boundary, subdivision (described above), refinement, and construc-
tion. For our root isolation problem, we can omit the boundary and refinement
phases. The construction phase amounts to ensuring that the output boxes are
pairwise disjoint. Since finding a root is metaphorically like “finding a needle
in a hay stack”, an efficient exclusion predicate Cout is crucial to the success
of such algorithms. Here, numerical forms of Cout such as those used in this
paper are relatively cheap and have advantages over algebraic ones.

1.2 Three Principles for Subdivision

We compare three general principles used in subdivision algorithms for real
root isolation: theory of Sturm sequences, Descartes’ rule of sign, and the
Bolzano principle. These principles are used in the exclusion and inclusion
predicates of the corresponding algorithms. Continued Fraction Solvers can be
viewed as extended Descartes methods since they use Descartes’ Rule of Sign
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as their main predicates, but combine it with an exclusion predicate based on
a root bound. Although the Continued Fraction method has not been proven
to achieve better worse case complexity [40,23,13], a significant speed up can
be observed in practice [13,1,15]. This paper concentrates on the Bolzano
principle, also known as the Bolzano theorem. It is simple and intuitive: if a
continuous real function f(x) satisfies f(a)f(b) < 0 then there is a point c
between a and b such that f(c) = 0. Furthermore, if f is differentiable and f ′

does not vanish on (a, b) then this root is unique in (a, b). In recent years, algo-
rithms based on the first two principles have been called (respectively) Sturm
method [37,20,9] and the Descartes method 1 [5,12,19,6]. By analogy, we may
call algorithms based on the Bolzano principle the Bolzano method [25,4,3].
Note that the Bolzano principle is an analytic one, while Sturm and Descartes
are more algebraic. The complexity analysis of Bolzano methods seems to be
new, prompted in part by interest in exact numerical methods in meshing alge-
braic surfaces [35,21,2]. Perhaps it is no surprise that Bolzano methods could
outperform the more sophisticated algebraic methods in practice. Somewhat
surprisingly, the results of this paper indicate that Bolzano methods could also
match the theoretical complexity of algebraic methods as well.

There are two basic complexity measures for subdivision algorithms: the sub-
division tree size S(n, L) and the bit complexity P (n, L) of the subdivision
predicates. Thus, T (n, L) ≤ S(n, L)P (n, L). But the analysis in this paper
shows that T (n, L) may be smaller than S(n, L)P (n, L) by a factor of n. Tree
size in the Sturm method is optimal in a very strong sense: for any polyno-
mial f(x) and for any interval I0, the Sturm subdivision tree is minimum in
an absolute, not asymptotic, sense. For the benchmark problem where f(x)
has degree n and L-bit integer coefficients, this tree size was shown to be
O(n(L + log n)) by Davenport [8] in 1985. This is optimal if L ≥ log n [12].
Modern algorithmic treatment of the Descartes method began with Collins and
Akritas [5]. The tree size in the Descartes method was only recently proven
to be O(n(L + log n)) [12]. In this paper, we will prove that the tree size in
the Bolzano method is Õ(n(L + log n)) for real roots. Furthermore, for our
extension of the Bolzano method for complex roots the corresponding tree size
is Õ(n2(L + log n)). Despite this larger tree size, we prove that both real and
complex Bolzano have Õ(n4L2) bit complexity, matching Descartes and Sturm.

Johnson [16] has shown empirically that the Descartes method is more efficient
than Sturm. Rouillier and Zimmermann [38] implemented a highly efficient ex-
act real root isolation algorithm based on the Descartes method. Since their
theoretical complexity bounds are indistinguishable, any practical advantage
of Descartes over Sturm must be derived from the fact that the predicates
in the Descartes method are cheaper. We believe that the Bolzano method

1 Note that we avoid the possessive “Descartes method” as Descartes did not en-
vision such algorithms.
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has a similar advantage over Descartes. This has not yet been demonstrated.
Nevertheless, it has an advantage of a different kind: The Bolzano method is
applicable to a much wider class of functions — most common analytic func-
tions are amenable. Furthermore, this paper shows that the Bolzano method
can be extended to the domain of complex numbers.

1.3 Contributions of this paper

1. Our root isolation algorithm is a contribution to a growing list of exact al-
gorithms based on numerical (as opposed to algebraic) techniques and simple
subdivision. Numerical subdivision methods are widely used in practice, being
easy to implement and having adaptive complexity. In comparison to existing
exact practical methods for real root isolation (Descartes, Sturm, Continued
Fraction) it extends to most common analytic functions and also to the do-
main of complex numbers.

2. This paper represents one of the first complexity analysis of exact numerical
subdivision methods based on the Bolzano principle. It uses a novel technique
of δ-clusters, from which we expect other application as well. Surprisingly, our
analysis shows that the simple Bolzano principle already yields an algorithm
EVAL whose worst-case bit-complexity matches those of more sophisticated
methods like Sturm or Descartes. Also unexpected is that the complex ana-
logue CEVAL achieve the same bit complexity as EVAL (despite the fact that
in terms of tree size, that of CEVAL is quadratic in the real size).

1.4 Overview of Paper

Section 2 reviews related work. The algorithm is presented in Section 3.
Therein we also summarize the results of our complexity analysis accomplished
in Section 5 by the use of the new concept of δ−clusters. Section 4 develops
basic tools for proving the correctness of the algorithm. Section 6 addresses
issues in implementing our algorithm exactly. We conclude in Section 7.

2 Prior Work

The main distinction among the various subdivision algorithms is the choice 2

of tests or predicates. One approach is based on doing root isolation on the
boundary of the boxes. Pinkert [34] and Wilf [43] (see also [44]) use Sturm-like
sequences, while Collins and Krandick [18] considered Descartes method. Such
approaches are related to topological degree methods [28], which go back to
Brouwer (1924).

2 We shall use the terms “predicate” and “test” interchangeably.
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2.1 Weyl’s Approach

We briefly review Pan’s work [33,30–32] as it is closest to our approach. Pan
regards his work as a refinement of Weyl’s Exclusion Algorithm (1924); this
algorithm was also the basis of work by Henrici and Gargantini (1969) and
Renegar (1987) (see [33]). The predicates are based on estimating the distance
λB from the midpoint m(B) of a box B to the nearest zero of the input
polynomial f(z). To estimate this distance, first shift m(B) to the origin by
the Taylor shift fB(z) := f(z +m(B)). Then consider

gB(z) := znfB(1/z) =
n∑

i=0

aiz
i

and find an estimate on the largest absolute value of the roots ξ1, . . . , ξn of
gB. As the roots of gB are the reciprocals of the roots of fB this gives us an
estimate on λB. One such estimate from van der Sluis (1970) is

T

n
≤ max

j
|ξj −m(B)| < 2T

where T = maxi≥1 |an−i/an|1/i. This gives an (relative) error factor of 2n
between the upper and lower estimates. A more sophisticated estimate from
Turan (1968), using O(n lnn) arithmetic operations, yields a constant error
factor (say 5). We need to improve these error factors to 1+ǫ for a small ǫ > 0.
To do this, apply the above proximity test to the polynomial gN , obtained by
the Graeffe iteration

g0(z) := gB(z)/an, computing gi+1(z) := (−1)ngi(
√
z)gi(−

√
z)

for i = 0, . . . , N − 1. Then the zeros of gk(z) are the 2k-th powers of the
zeros of gB(z). The proximity error reduces to 51/N (or (2n)1/N for the Sluis
estimate) which is smaller than 1 + ǫ if N is chosen to be sufficiently large.
Pan provided the following complexity analysis: let us count the number of
proximity tests in depth h of the subdivision tree. There are ≤ 4nh tests
since each zero accounts for 4 squares in each step, assuming that the relative
error is less than 1.4. Since each test takes O(n lnn) arithmetic operations,
so the total is O(n2h lnn) arithmetic operations. If 2−h is less than the root
separation bound, then h = O(n(L+lnn)). So the number of overall arithmetic
operations is O(n3 lnn(L+lnn)). However, Pan shows that exclusion test can
be combined with Newton-like accelerations to finally achieve the record bound
of O(n2 lnn ln(hn)). Concerning his method, Pan noted that “there remains
many open problems on the numerical implementation of Weyl’s algorithm and
its modification” [33, p. 216]; in particular, “proximity tests should be modified
substantially to take into account numerical problems ... and controlling the
precision growth” [33, p. 193]. In contrast, the details of implementing the
subdvision algorithm in the present paper will be fully fleshed out.
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2.2 The EVAL Algorithm

Our current work has roots in two prior lines of work: on one hand, it is
related to our work on subdivision methods based on Sturm sequences and
Descartes’ Rule of Sign [19,11,10,24,9,12]. On the other hand, it arose from
the surface meshing algorithms of Plantinga-Vegter [35]. Indeed, EVAL is the
1-dimensional analog of mesh generation in higher dimensions [3]. EVAL is an
exact computation form of a machine floating point algorithm from Mitchell
[25] who used it in ray tracing. He attributes ideas to Moore [26]. The key tool
in the PV algorithm and its extensions [21,2] is the use of interval functions,
evaluated on axes-parallel boxes.

Because we view our complex root algorithm as generalization of EVAL, let
us briefly recall the latter algorithm. Suppose f has only simple roots in an
interval I0 = [a, b] and we want to isolate the roots of f in I0. Assume that
we have interval formulations of f and its derivative f ′, denoted f, f ′. Fol-
lowing [3], we call f a box function for f if f is an inclusion function (i.e.,
f(I) ⊆ f(I)) and convergent (i.e., limi→∞ f(Ii) = f(limi Ii) where each Ii+1

is properly contained in Ii). EVAL depends on two predicates which we call
C0 and C1 on real intervals I:





C0(I) : 0 /∈ f(I)

C1(I) : 0 /∈ f ′(I).
(1)

Clearly, if C0(I) holds then f has no zeros in I. If C1(I) holds then f has at
most one zero in I. Moreover, the interior of I has exactly one zero iff the
following condition holds:

f(a)f(b) < 0, where I = [a, b]. (2)

We then say that I passes the sign-change test. Thus C0 is an exclusion
predicate. Similarly, C1 in combination with the sign-change test (2) provides
an inclusion predicate. The algorithm uses a queue Q (a simple list suffice) for
processing the intervals:

EVAL(I0):
Q← {I0}.
While Q is non-empty

Remove I from Q.
1. If C0(I) holds, discard I.
2. Else if C1(I) holds,
3. If I passes the sign-change test (2), output I.
4. Else, discard I.
5. Else
6. If f(m) = 0, output [m, m] where m = m(I) is the midpoint.
7. Split I into I ′, I ′′ at m, and put both intervals into Q.
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Termination and correctness are easy to see. The output intervals either have
the exact form [m,m] or are regarded as open intervals (a, b). This algorithm
is easy to implement exactly if we assume that all intervals are represented by
dyadic numbers, and f, f ′ are computable functions on dyadic intervals, and
the sign of f on dyadic numbers are computable. Obviously, this algorithm is
an analytic one – we can use it to find simple roots of most common analytic
functions f .

In this paper, the predicates (1) are assumed to be implemented as





C0(I) : |f(m)| > ∑
k≥1

|f (k)(m)|
k!

(
w(I)

2

)k
,

C1(I) : |f ′(m)| > ∑
k≥2

|f (k)(m)|
(k−1)!

(
w(I)

2

)k−1
.

(3)

where m = (a+b)/2 and w(I) = (b−a). This is closely related to the centered
form used in [3,36].

3 A New Complex Root Algorithm and its Complexity

In this section, we will state our main results in three parts. We will (1)
describe our main algorithm called CEVAL, (2) prove its correctness, and (3)
state bounds on its complexity. Details of the correctness proof and complexity
bounds are deferred to Sections 4 and 5 respectively.

Throughout this paper, we fix a square-free polynomial f ∈ C[z]. We also
write it as f(z) = f(x+ iy) = u(x, y)+ iv(x, y) where i =

√
−1, x = Re(z) and

y = Im(z) are real and imaginary parts of z, and u, v : R
2 → R. If z′ = x′ + iy′

then we write 〈z, z′〉 = xx′ + yy′. Absolute value is denoted |z| :=
√
〈z, z〉.

Sometimes, instead of viewing u(x, y) as a function of two real variables, we
view u as a real-valued complex function, writing u(z) = u(x+ iy) for u(x, y).
Similar remarks hold for v(x, y). Let S1 = [0, 2π) denote the set of angles in
radians. Then arg(ξ) ∈ S1 denotes the argument of a complex number ξ ∈ C.
If (x, y) ∈ R

2, we also write arg(x, y) for arg(x+ iy).

3.1 Complex Geometry

We use two basic shapes in our algorithms: disks and boxes. These are illus-
trated in Figure 1.

Let ξ, µ ∈ C and r > 0. Let Dr(m) denote the disk of radius r > 0 centered
at m ∈ C. We write “ξ ≤ µ” if Re(ξ) ≤ Re(µ) and Im(ξ) ≤ Im(µ). A subset
B ⊆ C is called a box if B = {z ∈ C : ξ ≤ z < µ} for some ξ ≤ µ. Also, let
B(ξ, µ) denote the smallest box that contains ξ, µ. The midpoint of B(ξ, µ)
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Disk Dr(m) Box B = B(µ, ξ)

µ

ξ

r

m

r(B)

w
(B

)

d(B)

m(B)

Fig. 1. Two geometric shapes in the complex plane: disk and box

is m(B) := (ξ + µ)/2. If ξ < µ, then the width, diameter, and radius of
B(ξ, µ) are (respectively) given by:

w(B) := min {Re(µ)− Re(ξ), Im(µ)− Im(ξ)}
d(B) := max {Re(µ)− Re(ξ), Im(µ)− Im(ξ)} ,
r(B) :=

1

2

√
w(B)2 + d(B)2.

We can split a box B into four equally dimensioned subboxes, called the
children of B. The boundary of a region R ⊆ C is denoted ∂R (R is usually
a disk or a box). A box B or disk D is said to be isolating if it contains
exactly one zero of f(z). Our goal is to find isolating disks for each of the
complex zeros of f(z) in a given box B0 ⊆ C.

3.2 Complex Analogues of the C0 and C1 Predicates

The EVAL algorithm in 2.2 is based on the interval predicates, C0 and C1 in
(1). We now provide the complex analogues of these predicates; disks will now
play the role of intervals. For m ∈ C and K, r > 0, define the test T fK :

T fK(m, r) : |f(m)| > K
∑

k≥1

∣∣∣∣∣
f (k)(m)

k!

∣∣∣∣∣ r
k. (4)

Since f is fixed in this paper, we simply write TK(m, r) for T fK(m, r). Also,

when f ′ is used in place of f , we may write T ′
K(m, r) for T f

′

K (m, r). Moreover,
for any disk D, we may also write TK(D) for TK(m(D), r(D)), etc. Our first
lemma shows that these tests (for suitable K) provide the analogues of the C0

and C1 predicates in (1):

Lemma 1. Consider any disk D:

(i) If T1(D) holds then D contains no zeros of f .

(ii) If T ′√
2
(D) holds, then D has at most one zero of f .

Thus, the test T1(D) serves as an exclusion predicate for the disk D. Part(i)

9



is obvious while Part(ii) is in Lemma 8 in Section 4.1.

3.3 The Eight Point Test

To extend the test T ′√
2
(D) in Lemma 1 into an inclusion predicate, we need

the analogue of the sign-change test (2). We now try to detect points where
the curves u = 0 and v = 0 cross the boundary of D. Such points can be
identified with angles as follows.

Let φ, φ′, θ be angles. We say that there is a u-crossing of Dr(m) at φ if

u(m + reiφ) = 0. We also need crossings not to be too close together: say φ
and φ′ are θ-separated if θ ≤ |φ−φ′| ≤ 2π− θ. Note that this notion is non-
vacuous only if θ ≤ π, and non-trivial only if θ ≥ 0. The notion of v-crossing

is similarly defined.

SW

W

NE

SE

S

E

N

NW

Dr(m)

D4r(m)

m

Fig. 2. 8 compass points on D4r.

In order to detect such crossings, we device
a finitistic test based on a set of canoni-
cal points on the boundary of D4r(m). The
main compass points of D4r(m) are the

8 points m + 4r · eijπ/4 for j = 0, 1, . . . , 7.
We give them standard labels: the four
cardinal points are N,S,E,W and four
ordinal points are NE,SE, SW,NW , as
illustrated in Figure 2.

The boundary ∂D4r(m) is subdivided by
the main compass points into 8 arcs

Aj :=
{
m+ 4reiθ : jπ/4 ≤ θ < (j + 1)π/4

}
.

For instance, the endpoints of A0 are E and NE. We extend the idea of
crossings to arcs: say there is an arc-wise u-crossing of D4r(m) at Aj if




u(m+ 4reijπ/4) · u(m+ 4rei(j+1)π/4) < 0, or

u(m+ 4reijπ/4) = 0.
(5)

If there is an arc-wise u-crossing at Aj then there is an u-crossing at some
φ ∈ [jπ/4, (j + 1)π/4). In a similar way we also define arc-wise v-crossings.

The 8-point test applied to the disk D4r(m) amounts to the following two
conditions:

• There are exactly two arcwise u-crossings at Aj and Ak and exactly two
arcwise v-crossings at Aj′ and Ak′ . Note that these arcs are on the boundary
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of D4r(m), not Dr(m).

• These pairs of crossings are interleaving in the following sense: either j <
j′ < k < k′ or j′ < j < k′ < k.

If any of these conditions does not hold, we say the disk fails the 8-point test.

Theorem 2 (Success of 8-Point Test). Suppose T ′
6(m, 4r) holds and the 8-

point test is applied to D4r(m).

(i) If D4r(m) fails the 8-point test, then Dr(m) is not isolating.

(ii) If D4r(m) passes the 8-point test, then D4r(m) is an isolating disk.

We view Theorem 2 as providing a “weak” inclusion predicate for the disk
Dr(m) because, in case the predicate holds, we do not guarantee an isolated
root in Dr(m), but only in D4r(m). Most of Section 3.6 is devoted to the proof
of this theorem.

3.4 The Root Isolation Algorithm CEVAL

We present the complex analogue of EVAL, called CEVAL:

CEVAL(B0, f):
Input: Box B0, and polynomial f(z) with only simple roots.
Output: List L of pairwise disjoint isolating disks with centers in B0.

Q← {B0}. L ← ∅.
While Q is non-empty

Remove B from Q. Let m = m(B) and r = r(B).
1. If T1(m, r) holds, discard B.
2. Else if T ′

6(m, 4r) and T ′√
2
(m, 8r) hold:

2.1 If D4r(m) fails the 8-point test, discard B.
2.2 Else if D4r(m) intersects any disk D′ in L,

replace D′ by the smaller of D4r(m) and D′.
2.3 Else insert D4r(m) into L.
3. Else

Split B into four children and insert them into Q.

3.5 Remarks on CEVAL

Note that CEVAL is described within an algebraic RAM model of computa-
tion. To implement CEVAL exactly, we need to attend to several details. We
make some preliminary remarks here, deferring other details to Section 6.
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(i) This description of CEVAL is close to what one can directly implement
using an arbitrary precision floating point package. Irrational operations (e.g.,
in the definition of r(B) can easily be replaced by a dyadic approximation.
E.g., Instead of TK(m, r(B)), you can use the predicate TK(m, δ(B)) where
δ(B) := 3

4
w(B) > r(B) is a dyadic value. Furthermore, you may replace

K =
√

2 by K = 3/2 and the ordinal compass points SE,NE,NW,SW =

m + w(B)
(
± 1

2
√

2
± 1

2
√

2
i
)

by SE,NE,NW,SW = m + w(B)
(
±20

29
± 21

29
i
)
,

respectively. The last replacement is justified by Theorem 14.

(ii) Note that in Step 2, we not only require T ′
6(m, 4r), but also T ′√

2
(m, 8r).

This is to ensure that whenever two discs in L overlap, we can discard either
one of them according to Lemma 1 (in Step 2.2, we discard the larger one).

(iii) In Step 2.2, there is an implicit search of the list L for disks that intersects
D4r(m). For simplicity, we may assume a simple linear search. Since the size
of L is non-decreasing, each search time is at most proportional to the output
size of L, which is at most n.

(iv) The reader may also note that although an isolating diskD in L is centered
in B0, there is no guarantee that the isolated root z0 ∈ D actually belongs
to B0. If we like, we could refine this algorithm with an additional parameter
ε > 0 and guarantee that z0 ∈ B0⊕Dε(0) (where ⊕ denotes Minkowski sum).
This refinement does not seem necessary in practice.

3.6 Correctness Statement

This is comprised of three claims:

Theorem 3. (Correctness)

(a) The algorithm halts.

(b) Throughout the algorithm, L is a list of pairwise disjoint isolating disks.
Each disk is centered at some point of B0.

(c) At termination, each zero of f(z) in B0 is isolated by some disk in L.

Claim (a) will be proven in a much stronger form when we give explicit com-
plexity bounds later. However, it is instructive to see that, in general, halting
is guaranteed if f(z) has only simple roots in B0. If the algorithm does not
halt, then there is an infinite sequence (B0, B1, B2, . . .) of boxes where Bi+1

is a child of Bi, and each Bi fails the T1, T
′
6, and T ′√

2
predicates. Thus the

sequence converges to a point z∗ = ∩iBi. By the convergence of these disk
predicates, this implies that f(z∗) = f ′(z∗) = 0, contradicting our assumption
that f has simple roots in B0.

12



To see (b), observe that a disk D4r(m) is only inserted into L in Steps 2.2 or
2.3. This happens after it passes the T ′

6-test, the 8-point test, and the T ′√
2
-test

on D8r(m). Lemma 1(ii) guarantees that such disks are isolating.

To see claim (c), we must show that no discarded box B ⊆ B0 contains a root
of f . Observe that boxes B ⊆ B0 are discarded in one of three steps of the
algorithm: Steps 1, 2.1, or 2.2. Step 1 is justified by Lemma 1(i) and Step 2.1
is justified by Lemma 1(i). Finally, Step 2.2 is justified by remark (ii) in 3.5.

It is important to note that a disk in L might isolate a root of f that lies
outside B0.

3.7 Complexity Results

We now summarize the results of the complexity analysis of our algorithm;
the actual proofs are found in Section 5. For this purpose, we consider the
benchmark problem of isolating all the roots of a square-free polynomial of
degree n with coefficients that are L-bit Gaussian integers. In fact, there is
little complexity difference between Gaussian integers and ordinary rational
integers. The initial start box may be assumed to be B0 = B(−2L(1+i), 2L(1+
i)). According to Cauchy’s bound [44] B0 contains all the roots of f .

As noted, the efficiency of subdivision methods crucially depends on the choice
of the exclusion predicate. By simple modification, you can reformulate our
algorithm by using any box function. You may apply a simple method such
Horner’s scheme applied to the initial polynomial f at each step. Although
this is relatively cheap, this approach may suffer from strong overestimation
for many boxes, in particular for those where the higher derivatives are small
in relation to those at the origin. This may result in a huge subdivision tree,
rendering the overall algorithm useless. Our chosen predicates T fK are based
on the Taylor expansions at the centers of boxes, and thus they profit from
the local information on the values of the higher order derivatives. We remark
that this is common to other efficient methods for real root isolation – there
are implicit Taylor expansions in the Descartes method, for instance.

3.7.1 Cluster Analysis and Tree Size

Let us denote the subdivision trees, induced by CEVAL and EVAL by TCE

and TEV respectively. Before stating our results that bounds the sizes of TCE

and TEV , it is instructive to first give a crude estimate.
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We start with a reformulation of the predicate T fK :

T fK(m, r) :
∑

k≥1

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣
rk

k!
<

1

K

It is easy to see (Section 5.2) that Σk(m) := (
∑

i
1

|m−zi|)
k constitutes an upper

bound on λk := |f (k)(m)|
|f(m)| for all k ≥ 1, where z1, . . . , zn denote the complex

roots of f . Therefore, if Σ1(m) < ν for a ν > 0, then
∑

k≥1

∣∣∣f
(k)(m)
f(m)

∣∣∣ rk

k!
< eνr−1.

We easily verify that T fK(m, r) succeeds if (see also Lemma 21)

Σ1(m) =
n∑

i=1

1

|m− zi|
<

1

r
ln

(
1 +

1

K

)
.

Now let us consider an arbitrary box B during the subdivision. If its midpoint
m(B) fulfills |m(B)− zi| > 2n · r(B) for all i = 1, . . . , n then T1(m(B), r(B))
succeeds according to the above consideration, thus B is discarded. For each
root zi, there exist at most O(n2) disjoint boxes B of the same size such that
|m(B)−zi| ≤ 2n·r(B). Thus, in total, at most O(n3) boxes are retained. From
this straightforward observation we immediately derive the upper boundO(n3)
on the width of TCE. This consideration is based on a pretty rough estimation
of Σ1 which assumes that, from a given point m, the distances to all roots zi
have roughly the same minimal value. In Section 5.1 we consider so called δ-
clusters of roots which are related to the size δ of boxes at a certain subdivision
level. We show that outside some “smaller” neighborhood of the roots of f
the sum Σ1(m) is sufficiently small to guarantee the success of our exclusion
predicate T1 (see also Theorem 19):

Theorem 4. Let z1, . . . , zn be points in the complex space and δ > 0 an arbi-
trary real value. Then there exist disjoint, axes-parallel, open boxesB1, . . . , Bk ⊂
C, k ≤ n2, with the following properties:

(i) The union B :=
⋃
i=1,...,k Bi of all boxes covers all points z1, . . . , zn.

(ii) B covers an area of less than or equal to 4n2δ2.

(iii) For each point p /∈ B we have
∑n

i=1
1

|p−zi| ≤
2(1+ln⌈n/2⌉)

δ
.

From this result it follows directly that the width of TCE is O((n lnn)2) (The-
orem 22). In case of the EVAL algorithm it turns out that the width of TEV

can be bounded by O(n lnn) (Theorem 23). A more refined argument in the
proof of Theorem 22 even shows that, at a certain subdivision level h, the
width of the tree is adapted to the number kh of roots which are not isolated
yet. To be more precisely, the width of TCE (or TEV ) is upper bounded by
O((kh ln kh)

2) (or O(kh ln kh)).
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We next apply the generalized Davenport-Mahler bound [9,10] to get a bound
on kh. This leads to the following result on the tree size (cf. Theorem 24):

Theorem 5. (Tree Size) For a square-free polynomial f of degree n with

Gaussian integer coefficients of at most L bits, T CE has Õ(n2L) nodes. Simi-

larly, T EV has Õ(nL) nodes.

3.7.2 Bit Complexity

To analyze the bit complexity of our algorithm we have to consider the com-
putational costs at a node of depth h. These costs are dominated by the
computation of the Taylor expansion f(z + m(B)) at the midpoint m(B) of
the corresponding box B. We refer to Section 6 where we show that, assuming
asymptotically fast Taylor shift, this can be achieved by Õ(n(L + nh)) bit
operations.

Readers familiar with the bit complexity analysis of the Descartes algorithms
will notice that, up to a constant factor, this bound matches the computa-
tional costs at a node of depth h there. Our result on the bit complexity of
the algorithms CEVAL and EVAL shows that the larger tree size of TCE, in
comparison to that of TEV , does not effect the overall computational costs:

Theorem 6. (Bit Complexity) For a square-free polynomial f of degree n with
integer coefficients of at most L bits, the algorithms CEVAL and EVAL isolate
the complex (real) roots of f with a number ∆CE (∆EV ) of bit operations

bounded by Õ(n4L2).

4 Proof of Correctness

This section proves the lemmas stated in Sections 3.3 and 3.4 for the correct-
ness of CEVAL.

4.1 Basic Tools

We recall some basic facts of complex analysis. The Cauchy-Riemann equa-
tions for f(z) = u(z) + iv(z) say that

ux = vy, uy = −vx.

where ux, uy, vx, vy denote the partial differentiations of u, v with respect to
x, y respectively. The gradient of u is given by ∇u = (ux, uy). Thus, ∇v =
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(vx, vy) = (−uy, ux). Furthermore, we have complex differentiation of f satis-
fying

f ′(z) :=
∂f

∂z
(z) = ux(z) + ivx(z) = vy(z)− iuy(z) = ux(z)− iuy(z). (6)

Thus,

arg f ′(z) = − arg∇u(z) = arg∇v(z)− π

2
. (7)

Let S1 = [0, 2π) denote the set of angles in radians, with the usual addition
modulo 2π. If α, β ∈ S1, let [α±β] denote the angular interval {α+ θ : |θ| ≤ β}.
To exclude the endpoints in this interval, we write (α±β) for {α+ θ : |θ| < β}.
We also write “ξ ‖ µ” (parallel) if arg(ξ) is arg(µ) or π + arg(µ), and write
“ξ ⊥ µ” (perpendicular) if arg(ξ) is arg(µ) + π/2 or arg(µ)− π/2.

The lemmas in the rest of this section will be stated in terms of two constants,
K > 1 and L > 1. We use these constants to define the predicate T ′

K(m, r)
and the disk DLr(m). Eventually, we will choose certain combinations of these
constants, namely (K,L) ∈ {(4, 4), (3/2, 8), (1, 1)}.

Lemma 7. If T ′
K(m, r) holds then for all ξ ∈ Dr(m), we have

arg f ′(ξ) ∈ (arg f ′(m)± arcsin(1/K)).

Equivalently,
arg∇u(ξ) ∈ (arg∇u(m)± arcsin(1/K)).

O

f ′(m)

R

arg∇u(m)− α

π + arg∇u(m) + απ + arg∇u(m)− α

arg∇u(m) + α

(a)

Θ+(m,K) Θ−(m,K)

arg∇u(m)

(b)

α = arcsin(1/K) π + arg∇u(m)

θ = arcsin(R/|f ′(m)|)

f ′(µ)

θ

Fig. 3. (a) Bounding | arg f ′(µ) − arg f ′(m)| for µ ∈ Dr(m). (b) Forbidden range
Θ(m, K) and its complement.

PROOF. Let R =
∑

k≥2

∣∣∣f
(k)(m)
(k−1)!

rk−1
∣∣∣. If µ ∈ Dr(m), we see that

f ′(µ) = f ′(m) +
∑

k≥2

f (k)(m)

(k − 1)!
(µ−m)k−1

and so |f ′(µ)− f ′(m)| ≤ R. Hence, from Figure 3(a), we see that

| arg f ′(µ)− arg f ′(m)| ≤ arcsin

(
R

|f ′(m)|

)
< arcsin(1/K)
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since T ′
K(m, r) holds implies |f ′(m)| > KR. The equivalent form in terms of

∇u follows from the fact that arg f ′(µ) = − arg∇u(µ).

It follows from this lemma that if T ′
K(m, r) holds and µ, ξ ∈ Dr(m) then

|arg f ′(µ)− arg f ′(ξ)| < 2 arcsin(1/K).

Thus, the argument of f ′(z) (for z ∈ Dr(m)) cannot vary by more than
2 arcsin(1/K).

The next property is, of course, a generalization of Lemma 1(ii).

Lemma 8. If K ≥
√

2 and T ′
K(m, r) holds, then the disk Dr(m) has at most

one zero of f .

PROOF. Say a, b are two zeros of f in Dr(m). As a = b implies f ′(a) = 0,
which is not possible as T ′

1(m, r) holds, we can assume a 6= b. Then f(a) =
f(b) = 0 and so u(a) = v(a) = u(b) = v(b) = 0. But u(a) = u(b) = 0 implies,
by the Mean Value Theorem, that there exists µ ∈ [a, b] such that

∇u(µ) ⊥ (b− a).

Similarly, v(a) = v(b) = 0 implies there exists ξ ∈ [a, b] such that

∇v(ξ) ⊥ (b− a).

But ∇v(ξ) = (vx(ξ), vy(ξ)) = (−uy(ξ), ux(ξ)). It follows that

∇u(ξ) ‖ (b− a).

Therefore ∇u(µ) and ∇u(ξ) must be perpendicular.

On the other hand, Lemma 7 says that if µ, ξ ∈ Dr(m), then arg∇u(µ) and
arg∇u(ξ) differ by less than 2 arcsin(1/K). Since K ≥

√
2, they differ by less

than 2 arcsin(1/
√

2) = π/2. This contradicts the perpendicularity between
arg∇u(µ) and arg∇u(ξ).

4.2 Crossings of u = 0 on Disk Boundary

We next prove several lemmas that show that u-crossings of a disk Dr(m) are
quite restricted under the following assumption.

The predicate T ′
K(m, r) holds for some K ≥

√
2. (8)

A similar argument shows corresponding results for v-crossings. To focus on
the behavior of the function u(z) = u(x, y) on the boundary of Dr(m), it is
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useful to consider u there as a function of the angle φ

um,r(φ) := u(m+ reiφ). (9)

From our earlier definition, there is a u-crossing of Dr(m) at φ iff um,r(φ) = 0.

We introduce the notation

Θ(m,K) := (arg∇u(m)±arcsin(1/K)) ∪(π+arg∇u(m)±arcsin(1/K)) ⊆ S1

for the double cone of angles. In Figure 3(b), this double cone is indicated by
two white sectors. We call Θ(m,K) the forbidden range. The complement
of the forbidden range is composed of two angular ranges (see Figure 3(b)),





Θ+(m,K) := [arg∇u(m) + π
2
± arccos(1/K)]

Θ−(m,K) := [arg∇u(m)− π
2
± arccos(1/K)].

(10)

The “forbidden” terminology is partly motivated by the next lemma. We show
that the derivative u′m,r(φ) := dum,r

dφ
(φ) of um,r(φ) does not vanish if φ lies

outside the forbidden range.

Lemma 9. Assume (8).

(i) If u′m,r(φ) = 0 then φ ∈ Θ(m,K).

(ii) There is at most one u-crossing of Dm,r in Θ+(m,K), and at most one
u-crossing of Dm,r in Θ−(m,K).

PROOF. (i) Let µ = m+ reiφ. Note that

u′m,r(φ) :=
dum,r
dφ

(φ) =ux(m+ reiφ)(−r sinφ) + uy(m+ reiφ)(r cosφ).

Since ei(φ+π/2) = − sinφ+ i cosφ, we conclude that




u′m,r(φ) = 0 ⇔ ∇u(µ) ⊥ ei(φ+π/2)

⇔ ∇u(µ) ‖ ei(φ).
(11)

Thus u′m,r(φ) = 0 implies arg∇u(µ) is equal to φ or to π+φ. Since (8) implies
arg∇u(µ) ∈ Θ(m,K), we conclude that φ ∈ Θ(m,K).

(ii) This is an immediate application of part (i) using Rolle’s Theorem.
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The preceding lemma implies that there are at most two u-crossings outside
the forbidden range. And in case that there are two such crossings, they must
lie on opposite sides of the circle separated by the forbidden range. The next
lemma is also useful for limiting u-crossings to at most two without consider-
ation of the forbidden range.

Lemma 10. Assume (8) and suppose there are three u-crossings of Dr(m) at

φ1, φ2, φ3 ∈ S1. Let ai = m + reiφi . Then each side of the triangle ∆a1a2a3 is
shorter than 4r/K.

PROOF. We consider a line segment [ai, aj]. As u(ai) = u(aj) = 0, the
Mean Value Theorem implies that there exists a point ξij on [ai, aj] where
∇u(ξij) ⊥ (aj − ai). Now if an interior angle of the triangle ∆a1a2a3 is in
between (2 arcsin(1/K), π − 2 arcsin(1/K)), at least for two of the gradients
∇u(ξij), their arguments would differ by more than 2 arcsin(1/K). But this
would contradict Lemma 7. W.l.o.g. let us consider the angle α3 at the point
a3. Then from the extended sine theorem we get |a2 − a1|/ sin(α3) = 2r, thus
we must have |a2−a1| = 2r sin(α3) < 2r sin(2 arcsin(1/K)) < 4r/K. Similarly,
|a3 − a1|, |a3 − a2| < 4r/K, too.

A consequence of Lemma 7 is to confine the curve u = 0 within a certain
double cone region:

Lemma 11. Assume (8) and suppose u(ξ) = 0 for some ξ ∈ Dr(m). Then
the curve u = 0 inside Dr(m) is confined within the double cone C(ξ,m, r,K)
consisting of all z ∈ Dr(m) that fulfill

|arg(z − ξ)− arg(∇u(m))| ∈
(π

2
± arcsin(1/K)

)
. (12)

N

W

β

Q α

W

N

S

Emm E

S

Q

P = m + reiφ

u = 0

∇u(m)∇u(m)

δ = π
2 − α− β

α ≤ arcsin(1/K)

β ≤ arcsin(1/L)

δ

ξ
R

α + β

(b)

α
α

α

ξ

ξ′

(a)

α + β

Fig. 4. (a) The double cone C(ξ, m, r, K) is shaded white; (b) The separation δ

between arg∇u(m) and u-crossing φ.
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PROOF. In Figure 4(a), the angle arg∇u(m) is viewed as pointing north-
ward, and the double cone C(ξ,m, r,K) is shaded white. If u(z) = 0 for any
z ∈ Dr(m), then by the Mean Value Theorem, there is a point µ on the line
segment [ξ, z] such that

∇u(µ) ⊥ (z − ξ). (13)

By the previous lemma,

| arg∇u(µ)− arg∇u(m)| ≤ arcsin(1/K). (14)

But (13) and (14) is equivalent to z ∈ C(ξ,m, r,K), as is evident from Fig-
ure 4(a).

The next two lemmas show that if the curve u passes relatively close to the
center of Dr(m) (say, within distance r/L for some L > 1) then the u-crossings
are separated from arg∇u(m) and from the v-crossing. First we show that u-
crossings are separated from arg∇u(m), as illustrated in Figure 4(b).

Lemma 12. Assume (8) and ξ is a root of f(z) with |ξ −m| ≤ r/L for some
L > 1. Then for any u-crossing φ of Dr(m), it obtains that φ and arg∇u(m)
are δ-separated where

δ ≥ δ(K,L) :=
π

2
− arcsin(1/K)− arcsin(1/L).

Similarly, φ and π+arg∇u(m) are δ-separated. If δ(K,L) > arcsin(1/K) then
u has exactly two u-crossing, one in Θ+(m,K) and the other in Θ−(m,K).

PROOF. Refer to Figure 4(b) where again we assume ∇u(m) is pointing
northward. Thus, (N − m) ‖ ∇u(m) where N is the north pole of Dr(m)
(see Figure 4). If φ lies in the third or fourth quadrants, then clearly φ and
arg∇u(m) are δ-separated. Otherwise, by symmetry, we may assume φ lies in

the first quadrant. Let P be the point m+ reiφ. So by assumption, u(P ) = 0.
Consider the angle δ := ∠(PmN) (see Figure 4(b)). Thus we must prove that
δ ≥ π

2
− arcsin(1/L)− arcsin(1/K).

Consider the line Pm: the point ξ is either above or below the line. It is not
hard to see that the minimum value of α(PmN) is attained only if ξ lies above
Pm, as seen in Figure 4(b). For instance, the point ξ′ in Figure 4(b) lies below
Pm, but it can be replaced by ξ := 2m− ξ which lies symmetrically opposite
relative to center m.

Let Q be the point on the line Pξ that is closest to m. Let R be the point
on the line Pm so that (Q − R) ⊥ ∇u(m). If we define α := ∠(RQP ) and
β := ∠(RPQ) then it easily seen that δ = π

2
− α − β. From Lemma 11, we

conclude that α ≤ arcsin(1/K) and from the assumption that |ξ −m| ≤ r/L,
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we see from examining the triangle ∆(Pξm) that β ≤ arcsin(1/L). These two
inequalities imply

δ ≥ (π/2)− arcsin(1/K)− arcsin(1/L).

By a symmetrical argument, we also conclude that π+∇u(m) and φ must be
separated by an angle of at least ((π/2)− arcsin(1/K)− arcsin(1/L)).

It remains to prove the claim about the number of crossings for δ(K,L) >
arcsin(1/K). As Dr(m) contains a root of f the image of ∂Dr(m) under the
function f is a curve in C that circles the origin at least once, thus we must
have at least two u−crossing on ∂Dr(m). We have already shown that all
u−crossings are separated from ∇u(m) and π+∇u(m) by an angle of at least
δ(K,L). Hence, from our definition of the forbidden range it follows that all
u−crossings are located outside the forbidden range, thus the claim about
exactly two u-crossings follows from Lemma 9.

The next lemma is similar to the preceding one, except that we now show
separation between u-crossings and v-crossings:

Lemma 13. Assume (8) and ξ is a root of f(z) with |ξ − m| ≤ r/L. If we
further assume that

π

2
− 2 arcsin 1/K − arcsin 1/L > 0,

then there are exactly two u-crossing φ1, φ2 and two v-crossings ψ1, ψ2 on
Dr(m), and they are interleaving. Each u−crossing φ is separated from each
v−crossing ψ by at least

δ :=
π

2
− 2 arcsin(1/K)− 2 arcsin

(
sin(π/4− arcsin(1/K))

L

)
.

ξ
P

Q

(a)
(b)

m

AI
AII

AIII

AIV

r/L

r

π/4− arcsin(1/K)

P ′

m δ

Q′

β

ξ

C⊥(ξ,m, r,K)

C(ξ,m, r,K)

Fig. 5. Angle separation between a u-crossing and a v-crossing.

PROOF. Wlog, assume arg∇u(m) = π/2 (i.e., ∇u(m) points northward).
From Lemma 12 we already know that there exists exactly two u-crossings
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φ1, φ2 and two v-crossings ψ1, ψ2. Let φ be a u-crossing, then we have u(P ) = 0

where P = m + reiφ, and likewise v(Q) = 0 where Q = m + reiψ, ψ a
v−crossing. By Lemma 11, P lies in the cone C(ξ,m, r,K), and similarly,
Q lies in the cone C⊥(ξ,m, r,K), defined as the cone C(ξ,m, r,K) rotated
by 90◦ about the point ξ. See Figure 5(a). From the assumption that π

2
>

2 arcsin 1/K, it follows that the two cones only share the point ξ. It follows
that the u− and v− crossings are interleaving. The complement of

(
∂C(ξ,m, r,K) ∪ ∂C⊥(ξ,m, r,K)

)
∩ ∂Dr(m)

is comprised of four arcs AI , AII , AIII , AIV . Because ∇u(m) points northward,
arc Ai may be associated with ith quadrant (i ∈ {I, II, III, IV }) in a natural
way. The angle subtended by arc Ai at m is proportional to the arc length of
Ai. It is not hard to see that the minimum angle ∠(PmQ) is attained under
the following conditions:
(a) P and Q are endpoints of one of these arcs.
(b) |m− ξ| = r/L.
(c) Measure of angle ∠(PξQ) is (π/2)− 2 arcsin(1/K).

Consider the somewhat more general situation where A′ is any arc of ∂Dr(m)
with endpoints P ′ and Q′ satisfying the analogues of conditions (a),(b), and
(c). What is the minimum measure of ∠(P ′mQ′)? This measure is minimized
when the line mξ bisects the angle ∠(P ′ξQ′). Thus the exterior angle at
∠(P ′ξm) has measure that is half of ∠(P ′ξQ′), i.e., (π/4)− arcsin(1/K). This
optimal configuration is illustrated in Figure 5(b).

If β is the measure of ∠(mP ′ξ), then the sign formula for ∆(P ′mξ) shows that

sin(β) =
sin(π/4− arcsin(1/K))

L

Let δ′ := (π/4) − arcsin(1/K) − β. The lemma follows from the fact that
arg(P ′ −m) and arg(Q′ −m) are 2δ′-separated.

4.3 Application to the 8-Point Test

We are now ready to apply the preceding lemmas, using them to prove Theo-
rem 2. Recall that this theorem is concerned with the success and non-success
of the 8-Point Test for D4r(m). We now fix the constants K = 6 and L = 4.

We also want to slightly generalize the 8-Point Test by allowing some flexibility
in choosing the 8 main compass points. Given 0 ≤ θ0 < θ1 < · · · < θ7 < 2π,

we can define the 8 main compass points on D4r(m) to be Pi := m + 4reiθi

(i = 0, . . . , 7). Say these compass points are δ-approximate if each pair
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(θi, θj) is δij-separated where

δij ∈ [45◦ ± δ].

We are interested in an Approximate 8-Point Test based on such a set of
δ-separated compass points. The following is the slightly generalized version
of Theorem 2:

Theorem 14 (Success of Approximate 8-Point Test). Assume the 8-Point
Test is based on a set of 2.5◦-separated compass points.

(i) If T ′
6(m, 4r) holds and Dr(m) is isolating, then D4r(m) passes the approx-

imate 8-Point Test.

(ii) If T ′
6(m, 4r) holds and D4r(m) passes the approximate 8-Point Test, then

D4r(m) is isolating.

PROOF. We first prove the Part (ii). If an approximate 8-Point Test suc-
ceeds for D4r(m), then we must show that D4r(m) contains a root of f . By the
assumption T ′

6(m, 4r), we know that D4r(m) has at most one root. The suc-
cess of the test implies that there are two arcwise u-crossings and two arcwise
v-crossings, and these interleave. Thus, there are two u-crossings φ+, φ− that
are 42.5◦-separated. A calculation shows that the distance |P − Q| between

P = m+ 4reiφ
+

and Q = m+ 4reiφ
−

is at least 4r
√

2− 2 cos 42.5◦ ≈ 2.9r

If there are any other u-crossings, then Lemma 10 implies the distance |P −Q|
is at most 4(4r)/6 ≈ 2.67r, which is a contradiction. Therefore, the u-curve
has exactly one connected component within D4r(m). Similarly for the v-
curve. Since the u-crossings and v-crossings are interleaving, they must inter-
sect within D4r(m). This intersection is the root we seek.

We now prove Part (i), so let us assume that Dr(m) contains a root ξ of f .

1. From Lemma 13 we know that there exists exactly two u−crossings φ+, φ−

and two v−crossings ψ+, ψ− which are interleaving.

2. Recall that the main compass points of D4r(m) divides ∂D4r(m) into eight
arcs. For any angle φ, let A(φ) denote the arc that contains φ. We claim that
there is an arc-wise crossings at A(φ∗) where φ∗ is either φ+ or φ−. Since φ∗

is at least π/2 − arcsin(1/4) − arcsin(1/6) ≈ 65◦-separated (see Lemma 12)
from arg∇u(m), and arcsin(1/6) ≈ 9.6◦, we conclude that the two endpoints
φ1, φ2 of A(φ∗) lie outside Θ(m, 4). This proves that um,4r(φ1)um,4r(φ2) < 0.
Moreover, A(φ+) and A(φ−)) are distinct because they are separated by the
forbidden range.

3. By the same argument we see exactly two arc-wise intersections at two
distinct arcs A(ψ+) and A(ψ−) for v. As we already know that the u- and v-
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crossings are interleaving it remains to show that A(ψ∗) and A(φ∗) are distinct
for φ∗ ∈ {φ+, φ−} and ψ∗ ∈ {ψ+, ψ−}. If A(φ∗) = A(ψ∗), then φ∗ and ψ∗ are
separated by at most 50◦. But this contradicts our result in Lemma 13 which
says that these crossings are separated by at least

π

2
− 2 arcsin(1/6)− 2 arcsin

(
sin(π/4− arcsin(1/6))

4

)
≈ 54.15◦.

This concludes our proof of Theorem 14.

5 Complexity Analysis

This section justifies the lemmas stated in Section 3.7 on the complexity of
CEVAL and EVAL. In particular, we introduce our cluster analysis technique.

5.1 The Clustering Approach

For the complexity analysis we need non-trivial bounds on the quotients

λk := |f (k)(m)|
|f(m)| where m is the midpoint of a box B in C, as these values

determine the success of our chosen predicates. It is easy to see (see Sec-
tion 5.2) that Σk(m) := (

∑
i

1
|m−zi|)

k constitutes an upper bound on λk(m)
where z1, . . . , zn denote the complex roots of f . Thus, before we turn to the
complexity analysis we formulate a number of useful results to estimate the
sum Σ1(m), in particular, we derive non-trivial upper bounds when m is lo-
cated outside some “small” neighborhoods of the roots zi.

Let δ > 0, and suppose R ⊆ R is a non-empty multiset of real numbers.
Multiset means that elements of R may be duplicated, and its size is denoted
|R|, with multiplicity counted. Then its center of gravity is

cg(R) :=

(
∑

x∈R
x

)
/|R|,

and δ-interval is
Iδ(R) := (cg(R)± |R|δ).

Thus the width of the Iδ(R) is 2|R|δ.

A ranking of R is a one-one onto function r : R→ {1, 2, . . . , |R|}. We call R
a semi δ-cluster if there is a ranking r of R such that for all x ∈ R,

(cg(R) + |R|δ)− x ≥ r(x)δ. (15)

We call R a δ-cluster if both R and −R = {−x : x ∈ R} are δ-clusters.
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Rewriting (15) as
x− cg(R) ≤ (|R| − r(x))δ

we see that the right-hand side is non-negative, and the inequality is automatic
when x ≤ cg(R). We are mainly interested in clusters, but it is easier to prove
properties for semi-clusters and to extend them to clusters by symmetry.

Consider the following examples:

Rn = {x1, . . . , xn} ,where x1 = xi for all i;

R1 = {−3, 1, 2} ;

R2 = {x1, x2} ;

R3 = {−x, 0, x} .

Rn is a δ-cluster for any δ > 0. R1 is a semi 1-cluster with cg(R1) = 0, but
it is not a 1-cluster. R2 is a δ-cluster iff |x0 − x1| ≤ 2δ. R3 is a δ-cluster iff
|x| ≤ 2δ.

5.1.1 Properties of Clusters

The following is immediate:

Lemma 15. If R is a δ-cluster, then R is contained in Iδ(R). In fact, a stronger
containment is true:

R ⊆ [cg(R)± (|R| − 1)δ].

This lemma motivates a useful definition: a collection P = {R1, . . . , Rk} is
called a δ-partition (of the set R =

⋃k
i=1Ri) if each Ri is a δ-cluster and

the intervals Iδ(Ri) are pairwise disjoint. Let Iδ(P) :=
⋃k
i=1 Iδ(Ri). Clearly, a

δ-partition of R induces an ordinary partition of R.

Another useful property is this:

Lemma 16. If R is a δ-cluster and p /∈ Iδ(R) then

∑

x∈R

1

|p− x| ≤
1 + ln |R|

δ
.

If P =
⋃
i=1,...,k Ri is a δ-partition of a multiset R, and p /∈ Iδ(P) then

∑

x∈R

1

|p− x| ≤
2(1 + ln ⌈|R|/2⌉)

δ
.

PROOF. As p /∈ Iδ(R), then we may, wlog, assume that p > x for all x ∈ R.
We only consider the first case as the case p < x can be treated completely
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similar. If r is the ranking function that witnesses R as a semi δ-cluster then
we have

∑

x∈R

1

|p− x| ≤
|R|∑

i=1

1

|p− r−1(i)| ≤
|R|∑

i=1

1

iδ
≤ 1 + ln |R|

δ
.

For the proof of the second claim we assume, wlog, that the clusters are ordered
in way such that x < y for all i < j and x ∈ Ri, y ∈ Rj. Let R0 :=

⋃
i=1,...,k0

Ri

be the union of all points x ∈ R with x < p and R1 :=
⋃
i=k0+1,...,k Ri. Notice

that p separates clusters as it is not contained in any Iδ(Ri). For i ≤ k0 and
x ∈ Ri we define the ranking function r : R0 → {1, . . . , |R0|} by r(x) :=∑k0

j=i+1 |Ri|+ ri(x) where ri denotes the ranking function that witnesses Ri as
a semi δ-cluster. It follows that |p− x| ≥ r(x)δ ≥ lδ if x is the l-th element of
R0 left to p. Hence, we get

∑

x∈R0

1

|p− x| ≤
|R0|∑

l=1

1

|p− r−1(l)| ≤
|R0|∑

l=1

1

lδ
≤ 1 + ln |R0|

δ
.

In an analogous manner we also show
∑

x∈R1
|p− x|−1 ≤ (1 + ln |R1|)/δ, and

thus ∑

x∈R

1

|p− x| ≤
2 + ln |R0|+ ln |R1|

δ
≤ 2(1 + ln ⌈|R|/2⌉)

δ
.

Lemma 17. Let R,R′ be semi δ-clusters of sizes n and n′, respectively. If
|cg(R)− cg(R′)| ≤ (n+ n′)δ, then

(i) max {cg(R) + nδ, cg(R′) + n′δ} ≤ cg(R ∪R′) + (n+ n′)δ

(ii) R ∪R′ is a semi δ-cluster.

The union of δ-clusters R, R′ is again a δ-cluster if Iδ(R) ∩ Iδ(R′) 6= ∅.

x

cg(S ∪ S ′) + (n+ n′)δ

cg(S)cg(S ′)

cg(S ∪ S ′)

≤ n′δ≤ nδ

Fig. 6. The union of two δ-clusters R, R′

PROOF. Wlog, let cg(R′) ≤ cg(R ∪R′) ≤ cg(R), as in Figure 6.
(i) Clearly, cg(R′) + n′δ ≤ cg(R ∪ S ′) + (n+ n′)δ. Furthermore, we have

(n+ n′)cg(R ∪R′) =ncg(R) + n′cg(R′)

≥ncg(R) + n′(cg(R)− (n+ n′)δ)

= (n+ n′)(cg(R)− n′δ)
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and thus cg(R ∪R′) ≥ cg(R)− n′δ, which shows the second part of (i).
(ii) Let r : R→ {1, . . . , n} and r′ : R′ → {1, . . . , n′} be the ranking functions
that witness R and R′ as the semi δ-clusters, respectively. We choose a new
ranking function r : R ∪R′ → {1, . . . , n+ n′} where

r(x) =




r(x) if x ∈ R,
n+ r′(x) if x ∈ R′.

If x ∈ R, then we have

cg(R ∪R′) + (n+ n′)δ − x ≥ cg(R) + nδ − x ≥ r(x)δ = r(x)δ

as desired. If x ∈ R′, then we also have

cg(R ∪R′) + (n+ n′)δ − x ≥ (cg(R′) + n′δ − x) + nδ ≥ r(x)δ + nδ = r(x)δ.

From the definition of Iδ(R) and Iδ(R
′) it is immediate that |cg(R)−cg(R′)| ≤

(|R|+ |R′|)δ if Iδ(R)∩ Iδ(R′) 6= ∅. Hence R∪R′ is a δ-cluster according to (ii).

Lemma 18. Let R be a multiset that contains n points x1, . . . , xn ∈ R and
δ > 0 an arbitrary real value. Then there exists a δ-partition P of R and for
each p /∈ Iδ(P) it holds that

n∑

i=1

1

|p− xi|
≤ 2(1 + ln ⌈n/2⌉)

δ
.

PROOF. Let P = {R1, . . . , Rk} be a partition of R where each Ri is a δ-
cluster. We will keep transforming P until it becomes a δ-partition. We start
with P = {{x1}, . . . , {xn}}. In each step we consider clusters R,R′ ⊂ P with
Iδ(R) ∩ Iδ(R′) 6= ∅. Their union R ∪R′ is again a δ-cluster due to Lemma 17.
We remove R and R′ from P and insert R∪R′. When all the intervals Iδ(R) for
R ∈ P are pairwise disjoint, we have the desired δ-partition. The statement
about the bound on the sum

∑k
j=1

1
|p−xi| follows directly from Lemma 16.

5.1.2 Complex Clusters

We now extend the concept of δ-clusters to a multiset R = {z1, . . . , zn} of
complex numbers. Let Re[R] and Im[R] denote the multiset of the real and
imaginary part of elements in R. We note that in our application, R is the
set of roots of a square-free polynomial and hence R is just an ordinary set.
Nevertheless, Re[R] and Im[R] will multisets in general.

According to Lemma 18 there exists a δ-partition
{
R1, . . . , Rk

Re

}
of Re[R].

Similarly, let
{
R̃1, . . . , R̃k

Im

}
denote a δ-partition of Im[R]. Each interval
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Iδ(Ri) (Iδ(R̃j)) defines a vertical (horizontal) stripe (see Figure 7 on page 32)
in the complex plane, containing all points z ∈ C with Re(z) ∈ Iδ(Ri) (Im(z) ∈
Iδ(R̃j)). Their overlapping consists of k := kRe · kIm disjoint boxes which we

denote by B1, . . . , Bk. For any point p /∈ ⋃k
i=1Bi, either Re(p) /∈ ⋃k

Re
i=1 Iδ(Ri)

or Im(p) /∈ ⋃k
Im
i=1 Iδ(R̃i), hence from Lemma 18 we get

∑n
i=1

1
|p−zi| ≤

2(1+ln⌈n/2⌉)
δ

.
Furthermore, let ǫ ≥ 0 be an arbitrary positive value and Bǫ

i the box that is
obtained by enlarging Bi by ǫ in each direction. If B :=

⋃
i=1,...,k Bi, then the

total area covered by the union Bǫ :=
⋃
B∈B B

ǫ of all these enlarged boxes is
upper bounded by

∑

i,j

(w(Iδ(Ri)) + 2ǫ)(w(Iδ(R̃j)) + 2ǫ) =
∑

i

(w(Iδ(Ri)) + 2ǫ) ·
∑

j

(w(Iδ(R̃j)) + 2ǫ)

≤ (2nδ + 2nǫ)2 = 4n2(δ + ǫ)2.

where the sum is taken over all i = 1, . . . , kRe ≤ n, j = 1, . . . , kIm ≤ n. We
fix this result.

Theorem 19. Let R be a multiset consisting of n points z1, . . . , zn in the
complex space and ǫ ≥ 0, δ > 0 arbitrary real values. Then there exist disjoint
axes-parallel boxes B1, . . . , Bk ⊂ C, k ≤ n2, with the following properties:

(i) The union B :=
⋃
i=1,...,k Bi of all boxes cover R.

(ii) Bǫ =
⋃
i=1,...,k B

ǫ
i covers an area of less than or equal to 4n2(δ + ǫ)2.

(iii) For each point p /∈ B we have
∑n

i=1
1

|p−zi| ≤
2(1+ln⌈n/2⌉)

δ
.

We conclude this section with another useful lemma. Again we consider a
multiset R, consisting of n complex points z1, . . . , zn. We are interested in a
partition of R into multisets that consist of nearby points, only. Let σ(zi) :=
minj 6=i |zi−zj| denote the distance of zi to its nearest point in R. Furthermore,
for an arbitrary δ > 0, we consider the multiset Rδ that contains exactly those
zi with σ(zi) ≤ δ.

Lemma 20. There exists a partition of Rδ into disjoint multisets R1, . . . , Rk

such that |Ri0 | ≥ 2 for each i0 ∈ {1, . . . , k} and |zi − zj| ≤ |Rδ|δ for all
zi, zj ∈ Ri0 .

PROOF. Wlog we can assume that Rδ consists of the points z1, . . . , zl with
an l ≤ n. We start with z1 and define R1 := {z1}. We further put all points zi
in R1 that satisfy |zi− z1| ≤ δ. Then we proceed with each point in R1 in the
same way. If no further point can be added to R1 we consider the set Rδ\R1

of the remaining points and treat it in exactly the same manner. Finally, we
end up with a partition R1, . . . , Rk of R such that for any two points in any
Ri0 , their distance is less than or equal to (|Ri0| − 1)δ ≤ |Rδ|δ. Furthermore,
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each of the multisets Ri must contain at least two points as σ(zi) ≤ δ for all
i = 1, . . . , l.

5.2 Analysis of the Subdivision Tree

We show that our algorithm CEVAL, despite its simple predicates, is also
efficient in a theoretical sense. More precisely, we consider the benchmark
problem of isolating all complex roots of a degree n polynomial with L bit
integer coefficients. In parallel, also the complexity analysis for its real coun-
terpart EVAL is given. We show that both algorithms have complexity bounds
that match (in Õ sense) those of known exact and practical algorithms for real
root isolation.

5.2.1 Notation

In the following considerations let f ∈ Z[z] be a square-free polynomial of de-
gree n ∈ N whose coefficients have at most L bits. The complex roots of f and
its derivative f ′ are denoted by z1, . . . , zn and z′1, . . . , z

′
n−1, respectively. We

further define σ(zi) := minj 6=i |zi − zj| as the distance of zi to its nearest root
and call σ(zi) the separation of zi. W.lo.g. we assume that the roots are ordered
with respect to their separations, that is, z1 has the smallest and zn the largest
separation. For a given positive value δ let k(δ) be the largest index k such that
σ(zk) ≤ 56n2δ. This apparently strange definition is justified by the results in
the Theorems 22 and 23. We further assume that we start with an initial square
box B0 (interval), centered at the origin and size s0 := w(B0) = d(B0) = 2L+2.
By Cauchy’s bound [44,10], B0 contains all roots of f (real roots in case of
EVAL). T CE and T EV denote the subdivision trees induced by CEVAL and
EVAL, respectively. At a certain depth h ∈ N of the subdivision tree all boxes
(intervals) B have the same size sh := w(B) = d(B) = 2L+2−h. We denote by
δh := 3sh/4 = 3 · 2L−h which is an upper bound on the radius of each of these
boxes (intervals).

5.2.2 Width of T CE and T EV

For a given point m and radius r the success of our exclusion predicate

T fK(m, r) : |f(m)| −K
∑

k≥1

∣∣∣∣
f (k)(m)

k!
rk
∣∣∣∣ > 0⇐⇒

∑

k≥1

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣
rk

k!
< 1/K
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mainly depends on the quotients
∣∣∣f

(k)(m)
f(m)

∣∣∣. Each of them can be rewritten as

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣ =

∣∣∣∣
∑′

i1,...,ik

1

(m− zi1) . . . (m− zik)

∣∣∣∣ ≤
(∑n

i=1

∣∣∣∣
1

m− zi

∣∣∣∣
)k

where the prime means that the ij’s (j = 1, . . . , k) are chosen to be distinct.
In the following we investigate in a good estimation of the sum Σ1(m) :=∑n

i=1
1

|m−zi| . We start with a simple observation:

Lemma 21. Let δ > 0 be an arbitrary positive real value and |m − zi| ≥ nδ
for all i, then T fK(m, r) is true for all K < (e

r
δ − 1)−1. In particular,

• T1(m, r) succeeds if |m− zi| > 2nr for all i = 1, . . . , n

• T ′
6(m, 4r), T

′
3/2(m, 8r) succeed if |m−z′i| > 28(n−1)r for all i = 1, . . . , n−1.

PROOF. From |m− zi| > nδ we get Σ1(m) < 1/δ, thus

∑

k≥1

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣
rk

k!
<
∑

k≥1

1

k!

(r
δ

)k
< e

r
δ − 1 ≤ 1/K.

In particular, for δ := 2r (δ := 28r applied to f ′) as (e1/2 − 1)−1 > 1 ((e1/7 −
1)−1 > 6, (e2/7 − 1)−1 > 3/2).

Now let us consider a box of a certain depth h in the subdivision tree. If
the midpoint m(B) of such a box B fulfills |m(B) − zi| > 2nδh for all i =
1, . . . , n then T1(m(B), δh) succeeds according to the previous lemma, thus B
is omitted. For each root zi, there exist at most O(n2) boxes with |mB − zi| ≤
2nδh. Thus, in total, at most O(n3) boxes are retained. This straightforward
observation is based on a pretty rough estimation of Σ1 which assumes that,
from a given point m, the distances to all roots zi have roughly the same
minimal value. In the following, we will use our results from Section 5.1 to
show that this preliminary bound can be substantially improved.

Theorem 22. (Width of T CE) For each h ∈ N, there exist disjoint square
open axes-parallel boxes B1, . . . , Bk ⊂ C, k ≤ k(δh), such that

(i) The total area of all boxes is at most

(8k(δh)(1 + ln ⌈|k(δh)/2|⌉)δh)2

(ii) For allm ∈ C\⋃k
i=lBl either T1(m, δh) or both, T ′

6(m, 4δh) and T ′
3/2(m, 8δh)

succeed.
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(iii) The width wh of T CE at the depth h ∈ N is bounded by

wh < (12k(δh−1)(2 + ln(k(δh−1) + 1)))2 = O(k(δh−1)
2 ln k(δh−1)

2)

This result shows that the width of T CE is bounded by O(n2(lnn)2). We next
formulate a version of the above theorem for the real case. It shows that the
EVAL algorithm induces a subdivision tree whose width is O(n lnn).

Theorem 23. (Width of T EV ) There exist disjoint open intervals I1, . . . , Ik,
k ≤ k(δh), on the real axes such that

(i) The total length of all intervals is smaller than or equal to

8k(δh)(1 + ln ⌈|k(δh)/2|⌉)δh

(ii) For all m ∈ R\⋃k
l=1 Il either T1(m, δh) or T ′

1(m, δh) succeeds.

(iii) The width wh of T EV at the depth h ∈ N is bounded by

wh < 3k(δh−1)(5 + ln(k(δh−1) + 1)) = O(k(δh−1) ln k(δh−1)) = O(n lnn).

S2

Re

Im

S1

S̃1

S̃2

S̃3

Root

Projection

z1 = p1 z2 = p2

z4

z3

z5

z6

q4

q3

m

p3 = p4q1 = q2

D6

D5

Root=Projection

Fig. 7. The roots z1, . . . , z4 define a multiset R with Re[R] = {p1, . . . , p4} and
Im[R] = {q1, . . . , q4} the projections of R onto the real and imaginary axes. The
corresponding δ-partitions define horizontal (pink) and vertical (blue) stripes S̃i and
Sj which intersect in disjoint boxes (yellow). The boxes which contains z1, . . . , z4

are denoted by B1, . . . , B4. Let m be a point on the boundary of one of the boxes
Bi which is not contained in D5 ∪D6. Then its distance to z5 and z6 is larger than
28nδh, thus

∑6
i=1

1
|zi−m| < 1

2δh
+ 1

28δh
= 2

3δh
.

We proceed with the proof of Theorem 22. Consider the setR =
{
z1, . . . , zk(δh)

}
,
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and

δ∗ := 4(1 + ln ⌈k(δh)/2⌉)δh.

We apply Theorem 19 to R, using δ∗ instead of δ and δh instead of ǫ: so there
exist disjoint open axes-parallel boxes B1, . . . , Bk̃, k̃ ≤ k(δh)

2, such that their

union B̃ :=
⋃
i=1,...,k̃ Bi has the following properties:

(a) B̃ contains all roots z1, . . . , zk(δh).

(b) B̃δh covers an area of at most 4k(δh)
2(δh + δ∗)2. Here, B̃δh denotes the

union of all boxes in B where we enlarge each Bi by δh in each direction as
in 5.1.2.
(c) For each point m /∈ B̃ we have

∑k(δh)
i=1

1
|m−zi| ≤

1
2δh

.

In the following we only consider those boxes which contain at least one of
the roots in R. Wlog we can assume that these are the boxes B1, . . . , Bk,
where k ≤ k(δh). Obviously the properties (a) and (b) are also fulfilled for
B :=

⋃
i=1,...,k Bi. Let ∂B :=

⋃
i=1,...,k ∂Bi be the union of the boundaries of all

boxes in B, then for each m ∈ ∂B the property in (c) holds, as well.

For the remaining roots zk(δh)+1, . . . , zn, we consider disks Di := D28nδh(zi),
i = k(δh) + 1, . . . , n of radius 28nδh, centered at zi. We denote the union of
all these discs by D :=

⋃n
i=k(δh)+1Di. Note that D is not necessarily disjoint

from B.

We now prove Part (ii) of Theorem 22. Let m ∈ C be an arbitrary point not
contained in B. We must show that either T1(m, δh) holds, or T ′

6(m, 4δh) and
T ′

3/2(m, 8δh) hold. We distinguish two cases:

• m ∈ D: Wlog, we can assume that m ∈ Dn. By definition of k(δh), we have
σ(zn) > 56n2δh. From [10,44] we know that the distance from zn to any root
z′1, . . . , z

′
n−1 of f ′ is larger than σ(zn)/n ≥ 56nδh. Thus, the distance from

m to any z′i is larger than 28nδh. According to Lemma 21 the predicates
T ′

6(m, 4δh) as well as T ′
3/2(m, 8δh) succeed, thus any box with center m and

radius less than or equal to δh is terminal.

• m /∈ B ∪ D: On C\ (B ∪ D) each quotient f (k)

f
, k = 1, . . . , n, defines a

holomorphic function. For each of these functions we have limz→∞
f (k)

f
(z) =

0. Thus, according to the maximum principle, their maxima are either taken
on the boundary of B or on the boundary ∂D of D. Thus, in order to

bound
∣∣∣f

(k)

f
(m)

∣∣∣, we can restrict to these cases. If m ∈ ∂Di for one of

the discs Di then m is at least 28nδh away from all roots of f and thus∣∣∣f
(k)

f
(m)

∣∣∣ ≤
(∑n

i=1
1

28nδh

)k
=
(

1
28δh

)k
. It remains to discuss the case where

m is on the boundary of one of the boxes. Then (c) holds and, in addition,
|m− zi| ≥ 28nδh for all i = k(δh) + 1, . . . , n. It follows that
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∣∣∣∣
f (k)

f
(m)

∣∣∣∣ ≤
(∑k(δh)

i=1

1

|zi −m|
+
∑n

i=k(δh)+1

1

|zi −m|

)k

≤
(

1

2δh
+ (n− k(δh)) ·

1

28nδh

)k
<

(
2

3δh

)k
.

Hence, in both situations we have
∣∣∣f

(k)

f
(m)

∣∣∣ <
(

2
3δh

)k
and thus

n∑

k=1

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣
δkh
k!
< e2/3 − 1 < 1.

Hence, T1(m, δh) succeeds and any box with center m and radius smaller
than δh is terminal.

It remains to show (iii) about the number of boxes in Theorem 22. If the
midpoint m(B) of a box B of depth h is contained in B then B is completely
contained in Bδh . Bδh covers an area of at most 4k(δh)

2(δh+δ
∗) = (2k(δh)δh(5+

4 ln ⌈k(δh/2)⌉))2. As all boxes B at depth h are pairwise disjoint and cover an
area of at least ((4/3)δh)

2 it follows that at most

(
3

2
k(δh)(5 + 4 ln ⌈k(δh/2)⌉))2 < (6k(δh)(2 + ln(k(δh) + 1)))2

boxes are retained. As each non-terminal node has four children the width wh
of T CE at height h is bounded by

(12k(δh−1)(2 + ln(k(δh−1) + 1)))2 = O(n2(lnn)2).

The proof of Theorem 23 is a direct consequence of our above considera-
tions. Consider the intersection of B with the real axes. The overlapping con-
sists of at most k(δh) intervals I1, . . . , Ik̄ and the total length of their union
I :=

⋃
l=1,...,k̄ Il is bounded by 2k(δh)δ

∗ = 8k(δh)(1 + ln ⌈k(δh/2)⌉)δh. We have
already shown that for all points m outside these intervals either T1(m, δh)
or T ′

6(m, 4δh) succeeds. Then trivially, either T1(m, δh) or T ′
1(m, δh) succeeds,

as well. Hence, an interval I of length at most 2δh with midpoint m /∈ I is
terminal. If an interval I with midpoint m(I) ∈ I has length at most 2δh,
then it is completely contained in Iδh :=

⋃
l=1,...,k̄ I

δh
l , where Iδhl is obtained by

enlarging Il by δh in both sides. Thus Iδh has total length less than or equal
to

2k(δh)(δh + δ∗) < 2k(δh)δh(5− ln 2 + ln(k(δh) + 1)).

At depth h all intervals have width 4
3
δh, thus at most 3

2
k(δh)(5−ln 2+ln(k(δh)+

1)) intervals are not terminal. As each non-terminal node in T EV has two
children the width of T EV at depth h is bounded by 3k(δh−1)(5+ ln(k(δh−1)+
1)).
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5.2.3 Size of T CE and T EV

The preceding analysis gives the width of the trees T CE and T EV . We now
bound their sizes. In particular, our result shows that the subdivision tree
induced by the EVAL algorithm is, at least in terms of Õ-complexity, as good
as that of well-known methods for real root isolation using Descartes’ Rule of
Sign or Sturm sequences.

Theorem 24. For a square-free polynomial f of degree n with coefficients of
at most L bits, the size of T CE is O((n lnn)2(L+ lnn)) = Õ(n2L). For T EV ,

the size is O(n(L+ lnn)(lnL+ lnn)) = Õ(nL).

PROOF. We first investigate in a bound on k(δh). As in the proof of Theo-
rem 22, consider the set R consisting of those roots z1, . . . , zk(δh) with separa-
tion σ(zi) ≤ 56n2δh. Then according to Lemma 20, there exists a partition of
R into disjoints sets R1, . . . , Rk such that |Ri0 | ≥ 2 for each i0 = 1, . . . , n and
|zi−zj| ≤ 56n2δh|R| ≤ 56n3δh for all pairs zi, zj ∈ Ri0 . We consider a directed
graph Gi on Ri which connects consecutive points of Ri in ascending order of
their absolute values. We define G := (R,E) as the union of all Gi. Then G is
a directed graph on R with the following properties:

(1) each edge (α, β) ∈ E satisfies |α| ≤ |β|,
(2) G is acyclic, and
(3) the in-degree of any node is at most 1.

Hence, we can apply the generalized Davenport-Mahler bound [9,10] on G:

∏

(α,β)∈E
|α− β| ≥ 1

((n+ 1)1/22L)n−1
·
(√

3

n

)#E

·
(

1

n

)n/2

As each set Ri contains at least 2 roots, we must have #E ≥ k(δh)/2. Fur-
thermore, for each edge (α, β) ∈ E we have |α− β| ≤ 56n3δh = 168n32L−h. It
follows that

(
168n32L−h

) k(δh)

2 ≥ 1

((n+ 1)1/22L)n−1
·
(√

3

n

)k(δh)

·
(

1

n

)n/2

>
1

(n+ 1)n2nL
·
(

3

n2

)k(δh)/2

and thus

k(δh) · (5 + 5 lnn+ (L− h) ln 2) > −2n(L ln 2 + ln(n+ 1))

where we used the inequality ln 56 < 5. Thus, for h > L + 8(1 + lnn) >
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L+ 5
ln 2

+ 5 lnn
ln 2

, we get

k(δh) <
2n(L ln 2 + ln(n+ 1))

(h− L) ln 2− 5− 5 lnn
<

3n(L+ ln(n+ 1))

h− L . (16)

Since h > L + 8(1 + lnn), we may define h′ := h − h0 ∈ N where h0 :=
⌈L+ 8(1 + lnn)⌉. Then (16) transforms into

k(δh) <
3n(L+ ln(n+ 1))

h′ + ⌈8(1 + lnn)⌉ <
3n(L+ ln(n+ 1))

h′
. (17)

For all h ≤ 2h0 we use the simple inequality k(δh) ≤ n whereas for h > 2h0

we use the bound on k(δ) in (17). From (17), we can bound on the height
hmax of TCE as follows. Observe by Theorem 22(iii) that when k(δh) = 0
then the width is 0. So we may assume k(δh) ≥ 1 in (17). Therefore h′ ≤
3n(L+ ln(n+ 1)). Therefore

hmax ≤ h′ + h0 ≤ 3n(L+ ln(n+ 1)) + L+ 8(1 + lnn) = O(n(L+ lnn)).

Now we are able to compute the size of TCE:

∣∣TCE
∣∣ ≤

hmax∑

h=1

(12k(δh−1)(2 + ln(k(δh−1) + 1)))2 (by Theorem 22)

≤ 144

2h0∑

h=1

(n(ln(n+ 1) + 2))2 + 144

hmax−h0∑

h′=h0+1

9n2

(
L+ ln(n+ 1)

h′

)2

· (2 + ln(n+ 1))2

= O(n2(lnn)3 + L(n lnn)2) +O(n2(L+ lnn)2) · (2 + ln(n+ 1))2 ·
hmax−h0∑

h′=h0+1

(
1

h′

)2

= O(n2(lnn)3 + L(n lnn)2) +O(n2(L+ lnn)2) · (2 + ln(n+ 1))2 · 1

L+ lnn

= O((n lnn)2(L+ lnn)) = Õ(n2L).

For the size of TEV we obtain

∣∣TEV
∣∣ ≤

hmax∑

h=1

3k(δh−1)(5 + ln(k(δh−1) + 1))

(by Theorem 23)

≤ 3

h0∑

h=1

n(ln(n+ 1) + 5) + 9(5 + ln(n+ 1)) ·
hmax−h0∑

h′=1

n
L+ ln(n+ 1)

h′

= O(n lnn(L+ lnn)) +O(n(L+ lnn) lnhmax lnn)

= O(n(L+ lnn)(lnL+ lnn) = Õ(nL).
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5.3 Bit Complexity

We will see that the larger tree size of TCE does not lead to an asymptotically
larger bit complexity when compared to TEV . More precisely, both algorithms
use Õ(n4L2) bit operations to isolate the roots of f (either real or complex).

Theorem 25. For a square-free polynomial f of degree n with integer coeffi-
cients of at most L bits, CEVAL and EVAL isolate the complex (real) roots

of f with a number ∆CE (∆EV ) of bit operations bounded by Õ(n4L2).

PROOF. We refer to Section 6 where we show that, for each node v of TCE

(TEV ) of depth h, the number λv of bit operations is bounded by Õ(nL+n2h).

For all h ≤ 2h0 = 2 ⌈L+ 8(1 + lnn)⌉ = Õ(L) this simplifies to λv = Õ(n2L).
Now our claim about the bit complexity derives from a simple computation
(cf. proof of Theorem 24):

∆CE ≤
2h0∑

h=1

(n(ln(n+ 1) + 2))2Õ(n2L)

+

hmax−h0∑

h′=h0+1

n2

(
L+ ln(n+ 1)

h′

)2

Õ(nL+ n2(h′ + h0))

= Õ(n4L2) +

hmax−h0∑

h′=h0+1

n4

(
L+ ln(n+ 1)

h′

)2

Õ(h′)

= Õ(n4L2)(1 +

hmax−h0∑

h′=h0+1

1

h′
) = Õ(n4L2). (18)

In the above inequality (18), we use Õ(nL + n2(h′ + h0)) = Õ(n2h′) because
the second summation is only summed over h′ ≥ h0 > L.
For the EVAL algorithm, the computation turns out to be a little simpler,
although the final bound is the same:

∆EV ≤
h0∑

h=1

n(ln(n+ 1) + 5)Õ(nL+ n2L)

+

hmax−h0∑

h′=1

n
L+ ln(n+ 1)

h′
Õ(nL+ n2(h′ + h0))

= Õ(n3L2) + Õ(n3L2)

hmax−h0∑

h′=1

1

h′
+ Õ(n3L)

hmax−h0∑

h′=1

1

h′
Õ(h′) = Õ(n4L2)
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6 Exactness and Other Implementation Issues

Our CEVAL algorithm is meant to be practical and suitable for exact imple-
mentation. In this section, we address the exactness question and also some
techniques to improve the practical efficiency of CEVAL.

The basis for all our numerical computation is the set of BigFloats or dyadic
numbers, F = {m2n : m,n ∈ Z} = Z[1

2
]. The ring operations (+,−,×) are

exact in F, as is division by 2. But general division will be approximated. See
[45] for discussion of the use of F for general real computation. In this paper, we
use the obvious extension to complex dyadic numbers F[i]. All input numbers
will be assumed to be dyadic; in particular, the polynomial f has coefficients
in F[i], and the initial box B0 = Box(µ, ξ) where µ, ξ ∈ F[i]. Subsequent
subdivision boxes remain dyadic.

Note that m is dyadic, but the exact radius r of the box is not. But we can
replace r by any dyadic upper bound: for square boxes of width w, we may
use the dyadic value 3/4w for r.

Next we consider the 8 compass points: the cardinal points (N,S,E,W ) are
dyadic, but the ordinal points (NE,SE, SW,NW ) are not. In fact, dyadic
points are generally impossible, and we must settle for some choice of rational
points. The proof on the exactness of our algorithm (cf. Theorem 14 in Ap-
pendix 4.1) shows that it is sufficient to choose a set of 8 angles {θi : i = 0, . . . , 7}
that are pairwise separated by angles in the range [45◦ ± δ] such that each θi
is Pythagorean, i.e., sin(θi) and cos(θi) are rational values. It is well known
that such angles are obtained from Pythagorean triples (x, y, z) ∈ N

3 where
x2 + y2 = z2, and it is also easy to generate such triples.

The amount of deviation δ depends on the choice of some constants K and L
— we have not tried to optimize this choice. In Theorem 14, we show that if
(K,L) = (6, 4) then we can choose δ = 2.5◦. For our purposes, we only need to
approximate the ordinal points. A useful Pythagorean triple for this purpose
is (x, y, z) = (20, 21, 29) Note that arcsin(20/29) ≈ 43.60◦.

In the 8-Point Test, it is not necessary to compute u(x, y) and v(x, y) sepa-
rately. Instead, we simply evaluate the function f(z) at the compass points
P . Note that P will be rational, not dyadic. The signs u(P ) := Re(f(P )) and
v(P ) := Im(f(P )) can usually be obtained exactly by interval arithmetic; even
exact sign can be obtained by sufficiently high accuracy approximation and
using zero bounds.

Our main predicates are based on the explicit representation of fB(z) :=
f(z +m(B)), the Taylor expansion of f at the center m(B) of a box B. The
direct computation of fB from f at each node of the recursion is costly. It
is better to compute fB incrementally as follows: let B′ be (wlog) the upper
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right child of B. We may also assume that our initial box is a square of width
2−k (k ∈ Z), centered at a dyadic point. Recursively, B is also a square of this
form. So

f(m(B′)+ z) = f(m(B)+2−k−2(1+ i)+ z) = f(m(B)+2−k−2(2k+2z+1+ i)).

We now compute fB′ from f0(z) := fB(z) in three steps: First scale the func-
tion f0 by the substitution z 7→ 2−k−2z to obtain f1(z) := f0(2

−k−2z). Next
apply a Taylor shift by 1, and a shift by i, to get f2(z) := f1(z+1+ i). Finally,
we scale again with z 7→ 2k+2z to yield our goal, fB′(z) = f2(2

k+2z).

Assume the standard encoding of binary floating point numbers, each scaling
z 7→ 2kz amounts to adding k to the exponents of the polynomial coefficients.
Thus the computational cost is dominated by the Taylor shifts. A Taylor shift
by i can be realized as a Taylor shift by 1 combined with two scalings by i, an
immediate consequence of the identity f(z+i) = f(i(−iz+1)). Using classical

Taylor shift [17], a shift by 1 requires Õ(n2(n+ τB)) bit operations, where the
coefficients of fB are represented by 2τB -bit dyadic numbers. However, using
asymptotically fast Taylor shift [14,10], this number reduces to Õ(n(n+ τB)).
Also, the bit complexity of the coefficients grow by O(n) bits in every node.
As we start with a polynomial f with integer coefficients of at most L bits,
we get τB = O(L+ nh) for each box B at depth h in the subdivision tree.
For the predicate evaluations and the point evaluations in the 8-Point Test we
have to compute the value of a polynomial, whose coefficients are O(L+ nh)-
bit dyadic numbers, at a point of bit complexity O(1). Therefore O(L+nh) bit
operations are sufficient. It follows that the overall number of bit operations
at a node of depth h is bounded by Õ(n(n+ τB)) = Õ(n(L+ nh)).

Our description of the test TK does not exploit any additional information
that might be obtained while doing the test. For instance, in practice, the test
TK(m, r) proceeds by computing the remainder term

R(m, r) :=
∑

k≥1

∣∣∣∣
f (k)(m)

k!

∣∣∣∣ r
k

and |f(m)| separately. Then the test TK(m, r) amounts to checking if |f(m)| >
K · R(m, r). Even in the case of a failure, the values |f(m)| and R(m, r) can
be used to determine subsequent actions. In the case of the exclusion test
T1(m, r), a success currently excludes the box contained in Dr(m); but in
fact, the computed value may justify the exclusion of a much larger region.
Furthermore, from the Taylor expansion at m we can also derive approximate
information (via root bounds) about the largest r that fulfills |f(m)| > R(m, r)
which allows us to exclude disc regions of a certain size and thus to approxi-
mate the roots faster than by simple bisection. But to exploit this, we need to
leave the comfortable framework of quadtrees. In future work, we will explore
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such techniques. We remark that all these techniques directly correspond to
the additional steps done in the continued fraction algorithm in comparison
to the bisection algorithm by Vincent, Collins and Akritas.

We observe that the computation of R(m, r) requires general division opera-
tions even if m and r are dyadic. However, we could compute the dyadic value
d!R(m, r) where d = deg f(z), or simply compute a dyadic upper bound for
R(m, r).

7 Conclusion

This paper continues a line of recent work to develop exact subdivision al-
gorithms based on the Bolzano principle. The primitives in such algorithms
are based on numerical function evaluation, and hence simple to implement,
extendible to analytic functions, and quite practical.

Here we introduce a new complex root isolation algorithm whose asymptotic
complexity is shown to be competitive (up to logarithmic factors) with known
exact practical algorithms. It is somewhat unexpected that algorithms based
on such simple primitives can match those based on more sophisticated prim-
itives such as found in Descartes, Continued Fraction or Sturm methods. An-
other surprise is that the complex case has (up to logarithmic terms) the same
bit complexity as the real case.

Our complexity analysis introduces new ideas including a technique of root
clusters which is expected to have other applications. One open problem is
to sharpen our complexity estimates (only improvements in logarithmic terms
can be expected).

Another direction is to develop practical techniques for implementing our
method. We expect the competitiveness of Bolzano to be observed in prac-
tice. Although our theoretical bounds are based on asymptotically fast Taylor
shifts, experiments by various authors [42,16,10] have shown that the straight-
forward implementation is probably better for degrees up to 1000. Various
trade offs arise in their use in the algorithm, and it is clear that we can exploit
partial information obtained while evaluating such predicates.

The Descartes method had been successfully extended to the so called bit-
stream model [11,24] in which the coefficients of the input polynomial are
given by a bitstream on-demand. It has useful applications in situations where
the coefficients are algebraic numbers (e.g., in cylindrical algebraic decomposi-
tion). We plan to extend EVAL and CEVAL algorithms in this direction. This
is justified by the following simple observation: CEVAL does not only isolate
the roots of f but it also comes with a lower bound on the separation σ(zi) of
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each root zi: If Bi is an isolating box for zi in the output then σ(zi) > r(Bi)
(see also 3.5 (ii)). In [24] this was the critical property. We claim that, in
a complete analogous manner, our algorithm also extends to the bitstream
model. This will be in future work.
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