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Exercise 7

Summer 2011
To be handed in on May, 31th.
Discussion on June, 1st.

7.1 Complex bitstream solver

In the lecture, we used a root solver for univariate polynomials with arbitrary algebraic coefficients
for the lifting over critical fibers. In this exercise, we aim to show that there are algorithms better
suited for the root isolation of those polynomials. In particular, they do not require the costly
symbolic operations involved in the exact handling of non-rational coefficients.
In the following considerations, let f(x) =

∑n
i=0 aix

i ∈ R[x], an 6= 0, be a univariate polynomial
with real coefficients.

1. Show that

M := 1 + max
0≤i<n

{
|ai|
|an|

}
is a root bound for f, that is, for each root α of f, it holds that |α| < M.

In particular, g(x) := f(dMex) has all its roots in the complex unit disc ∆1(0).

2. Let f ∈ R[x] be a square-free polynomial. Assume that each coefficient a of f can be
approximated arbitrarily well with dyadic numbers, that is, we can get values ã ∈ Z[12 ]
satisfying |ã− a| ≤ µ for arbitrary µ ∈ R>0.

In addition, you have the following theorem, which describes the quantitative relation between
the roots of a polynomial F =

∑n
i=0 Fix

i and a µ-approximation F̃ =
∑n

i=0 F̃ix
i of F :

Theorem (Schönhage). Let F be a polynomial of degree n with roots α1, . . . , αn ∈ C such
that |αi| < 1. Let µ < 2−7n and F̃ be a polynomial of degree n with complex roots α̃1, . . . , α̃n

such that

||F − F̃ ||1 < µ||F ||1,

where ||F ||1 =
∑n

i=0 |Fi|. Then, up to a permutation of the α̃i’s, it holds that

|αi − α̃i| < 9 n
√
µ.

In particular, all roots of F̃ are in the complex unit circle ∆1(0).

Combine this information with the preceding parts to devise a root isolator for all complex
roots of a polynomial f ∈ R[x] with real-valued coefficients.
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Hints:

(a) Use CEVAL (your root solver from exercise 5.2) to find solutions of g̃ = 0, where g is
defined as in the first part of this exercise.

(b) Derive isolating regions for the roots of g from those of g̃.

(c) Consider a reasonable threshold for the minimal size of the boxes in the subdivision
process.

3. (Bonus) How can you isolate the roots of an f ∈ R[x] if f is not square-free, but you know
the degree deg gcd(f, f ′) in advance?

7.2 Topological analysis of algebraic curves

1. Use the implicit function theorem and the result from exercise 7.1, part 1, to prove thefollowing
theorem:

Theorem (Delineability of algebraic curves). Let f ∈ Z[x, y] be square-free and I ⊂ R be an
open interval not containing an x-critical coordinate of f. Then, f is delineable over I, which
means that there exist m ∈ N and C∞ functions g1, . . . , gm : I → R such that:

• g1(x0) < g2(x0) < · · · < gm(x0) for all x0 ∈ I, and
• VR(f) ∩ (I × R) =

⋃m
i=1{(x, gi(x)) : x ∈ I}.

In other words, f decomposes over I into m distinct function graphs.

2. Give the isotopy between the curve C = VR(f) and its topology graph as determined in the
lecture.

Hint: First devise the isotopic transformation along a single fiber, then generalize to the
complete graph.

7.3 Topology of a planar curve

Determine the topology of the planar curve C := VR(x3 − 2xy + 2y2 + x2), that is, compute an
isocomplex (topology graph) for C .

Have fun with the solution!
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