

Computer Algebra Michael Sagraloff Summer 2011
To be handed in on July, 12th.
Discussion on July, 13th.

Exercise 12

12.1 Zariski topology

In this exercise, we establish the notion of the Zariski topology over \mathbb{A}^n for algebraic varieties over some field F. It is induced by the definition of the closed sets as the algebraic sets in \mathbb{A}^n :

$$M \subset \mathbb{A}^n$$
 is Zariski-closed $\stackrel{def}{\Leftrightarrow} M = \mathcal{V}(I) := \mathcal{V}_{\mathbb{A}^n}(I)$ for some ideal $I \subset F[x_1, \dots, x_n]$.

Let $\mathcal{C} := \{\mathcal{V}(I) : I \subset F[x_1, \dots, x_n] \text{ an ideal}\}\$ denote the set of all Zariski-closed sets.

- 1. Let $\mathcal{O} := \{\mathbb{A}^n \setminus C : C \in \mathcal{C}\}$ be the Zariski-open sets. Show that $(\mathbb{A}^n, \mathcal{O})$ in fact defines a topological space:
 - (a) Both the empty set and \mathbb{A}^n are in \mathcal{O} .
 - (b) \mathcal{O} is closed under arbitrary union. (I.e., $O_j \in \mathcal{O}$ for all $j \in J$ implies $\bigcup_{i \in J} O_i \in \mathcal{O}$ for arbitrary J.)
 - (c) \mathcal{O} is closed under finite intersection. (I.e., $O_j \in \mathcal{O}$ for all $j \in \{1, ..., n\}$ implies $\bigcap_{1 \leq j \leq n} O_j \in \mathcal{O}$ for $n \in \mathbb{N}$.)
- 2. We define the Zariski closure \overline{M} of $M \subset \mathbb{A}^n$ as $\overline{M} := \mathcal{V}(\mathcal{I}(M))$. Prove:

$$\overline{\mathcal{V}(I)\setminus\mathcal{V}(J)}\subset\mathcal{V}(I:J)$$
 for ideals I and J in $F[x_1,\ldots,x_n]$.

3. Prove: If F is algebraically closed and I is radical, then equality holds: $\overline{\mathcal{V}(I) \setminus \mathcal{V}(J)} = \mathcal{V}(I:J)$.

12.2 Primary decomposition

- 1. Prove Lemma 7.1.5.
- 2. Show that if Q_1 and Q_2 are P-primary, then $Q_1 \cap Q_2$ is P-primary as well.
- 3. Show that $I: g^m = I: g^{m+1}$ implies that $I = (I: g^m) \cap (I, g^m)$.
- 4. Find (by hand) a primary decomposition for the radical of $I := (y^2 + yz, x^2 xz, x^2 z^2)$.

12.3 Gröbner basis computation

Let $I = \langle f_1, f_2 \rangle$, where

$$f_1 = x^3y - 3x^2y^2 + x^2y - x^2 - 3xy^2 + 3y^3 + 6y$$
 and $f_2 = x^2y + xy - x - 3y$.

Compute a Gröbner basis for I with respect to the lexicographical order, and determine all solutions of $f_1 = f_2 = 0$.

12.4 Point Sets

Let $X \subset \mathbb{Q}^n$ be a set of d points such that the n-th coordinates of all these points are distinct. Show that the Lexicographic Gröbner Basis for $\mathcal{I}(X)$ is of the form

$$(x_1 - p_1(x_n), x_2 - p_2(x_n), \dots, x_{n-1} - p_{n-1}(x_n), p_n(x_n)),$$

where p_n is of degree d and the other p_i of degree at most d-1. Hint: Use Lagrange interpolation!

Have fun with the solution!