Optimization I

Summer 2011 Homework 1

Introduction to Linear Optimization

This assignment is due on **April 28 in lecture**. You are allowed (even encouraged) to discuss these problems with your fellow classmates. All submitted work, however, must be *written individually* without consulting someone else's solutions or any other source like the web.

1. Consider the following LP:

$$\begin{array}{ll} \max & x_1 + x_2 \\ \text{s.t.} & -2x_1 + x_2 \leq 4 \\ & x_2 \leq 6 \\ & 3x_1 + x_2 \leq 18 \\ & x_2 \geq 0, x_1 \text{ unrestricted.} \end{array}$$

(a) Plot the feasible region and find the optimal solution.

r

- (b) What is the optimal objective value if we remove the constraint $3x_1 + x_2 \leq 18$ from the LP?
- (c) Show how to reformulate the LP from (a) into the form minimize $c^T x$ subject to $Ax \ge b, x \ge 0$ (i.e., you need to give appropriate vectors c and b and matrix A).
- 2. (Problem 1.4 in B & T) Consider the problem

minimize
$$2x_1 + 3|x_2 - 10|$$

subject to $|x_1 + 2| + |x_2| \le 5$,

and reformulate it as a linear program.

3. Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$, and suppose P is bounded and non-empty. Let x^1, \ldots, x^k be the vertices of P. In class, we will prove that any vector z in P can be written as a convex combination of x^1, \ldots, x^k , i.e. for any $z \in P$ there exist non-negative scalars $\lambda_1, \ldots, \lambda_k$ with $\sum_{i=1}^k \lambda_k = 1$ such that $z = \sum_{i=1}^k \lambda_i x^i$.

Use this fact to prove that for any $c \in \mathbb{R}^n$, the LP

 $\min c^T x$ subject to $Ax \ge b$

has an optimal solution that is a vertex of P.

Note that this proves that if P is bounded and non-empty, we can find an optimal solution by checking all vertices of P.

4. (Extra Credit) Consider the LP:

minimize
$$c^T x + d^T y$$

subject to $Ax + By = b$
 $x \ge 0, y$ unrestricted.

Suppose we want to convert this problem to one in standard form; that is, with all variables being nonnegative. In class, we saw that one could do this by replacing the unconstrained variables with the difference of nonnegative variables (e.g. $x_j = x_j^+ - x_j^-$ for $x_j^+ \ge 0, x_j^- \ge 0$), but this doubles the number of such variables. Devise another technique to obtain an equivalent standard form problem where the number of variables is only increased by one.