Summer 2011 Homework 4

Duality

This assignment is due on **May 23 in lecture**. You are allowed (even encouraged) to discuss these problems with your fellow classmates. All submitted work, however, must be *written individually* without consulting someone else's solutions or any other source like the web.

- 1. Construct the dual of
- min s.t. $2x_1$ $3x_2$ x_3 $4x_3 - 2x_3 +$ $+ x_2 + - x_2 +$ $2x_4$ $3x_1$ ≥ 3 x_2 $-x_1$ x_4 1 x_2 > 0,> 0.
- 2. Consider the shortest path problem we discussed in lecture: We are given a directed graph G = (V, E). Let |V| = m, |E| = n. We assume the nodes are labelled v_1, \ldots, v_m , and the edges are labelled e_1, \ldots, e_n . There is a cost/length $c_j \ge 0$ associated with each edge $e_j \in E$.

Your friend has implemented Dijkstra's algorithm and his program outputs the shortest path from v_1 to v_m , and it outputs a value d(i) for each i, which is equal to the length of the shortest path from v_i to v_m .

However, your friend is not a very good programmer, and you are worried that the output may not be correct. Explain how you can verify in O(|E|) time whether the path output by your friend's program is indeed the shortest path from v_1 to v_m .

3. Consider the following linear program

\min	$-10x_{1}$	$-12x_{2}$	$-12x_{3}$	
s.t.	x_1	$+2x_{2}$	$+2x_{3}$	≤ 20
	$2x_1$	$+x_{2}$	$+2x_{3}$	≤ 20
	$2x_1$	$+2x_{2}$	$+x_{3}$	≤ 20
	$x_1,$	$x_2,$	x_3	≥ 0

Suppose you were asked to solve this problem on the midterm exam. You would first transform this into standard form (i.e., you introduce a slack variable for each row), and then use the Simplex Method to find the optimal solution. You would find the following optimal tableau:

		x_1	x_2	x_3	x_4	x_5	x_6
	136	0	0	0	3.6	1.6	1.6
x_3	4	0	0	1	0.4	0.4	-0.6
x_1	4	1	0	0	-0.6	0.4	0.4
x_2	4	0	1	0	0.4	-0.6	0.4

Unfortunately, you find out that you misread the question: the right hand side of the last constraint should be 40, i.e., the third constraint is $2x_1+2x_2+x_3 \leq 40$ (or with slack variables $2x_1+2x_2+x_3+x_6 = 40$). There is not enough time to repeat your computations from scratch...

(a) Explain how to read off the inverse basis matrix \mathbf{B}^{-1} from this tableau.

- (b) Show how the tableau associated with the current basis changes if you use the new right hand side vector.
- (c) Use the dual simplex method to find the optimal solution for the new problem.
- 4. (Extra Credit) When we talked about the initialization of the Simplex Method, we saw that we can find a feasible solution to a system of linear inequalities (or prove that none exists) by solving a linear program (where the LP is such that finding an initial feasible solution is trivial). So checking feasibility of a system of linear inequalities is not harder than solving a linear programming problem.

Now, show that the converse is also true: given a linear program in standard form, i.e. $\min c^T x$ s.t. $Ax = b, x \ge 0$, demonstrate a set of linear inequalities such that finding a feasible solution to this set of inequalities is equivalent to solving the linear program.

You may assume the linear program has a finite optimum. If $A \in \mathbb{R}^{m \times n}$ then the system of linear inequalities should have O(m+n) variables and O(m+n) constraints.