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Motivation. In the basic setup of the probabilistic method to prove the existence of a certain object,
we have to prove that the probability of a certain event is greater than zero. In many cases involving
the first- or second moment method, we actually proved something stronger and showed that the
probability of the event is not only greater than zero but also very high (examples include the high
girth/high chromatic number result and the result about the number of prime factors). We are now
going to focus on the case where the probability of the desired event will hold with positive, albeit very
small, probability. A trivial example is when we have n mutually independent events and each of them
holds with probability at least p > 0. Then the probability that all these events occur is at least p™ > 0.
The Lovasz Local Lemma provides a way to obtain a similar statement, provided that the events are
not mutually independent but the dependencies are not “too strong”.

1 Recap: Pairwise Independence and Mutual Independence
Definition 1. A collection of events {&;: i € T} is pairwise independent if for every pair i # j € T,
Pr(& A& = Pr[&] - Prl&)).

(Note that if two events & and &y are disjoint, then they are dependent!) A collection of random
variables {X; : Q@ =R, : i €Z} X, Y : Q — R is pairwise independent if for every values {x; € R},

Pr [/\iEI(Xi < .752)] = HPI‘ [Xz < JIZ] .
i€l

Remark: for random variables whose range is a finite or countably infinite set (which will be the
common setting in this course) one can replace in the above definition“< z;” by “= x;”.

Note that pairwise independence is equivalent to Pr[&; | £;] = Pr[&] for all j # i (assuming that
E; # 0). A useful fact about pairwise independence is linearity of the variance, i.e., when Xi,..., X,
are pairwise independent random variables

Var [il X,L] = iVar [Xl] .

Definition 2. A collection of events {&;: i € Z} is (mutually) independent if for all subsets S C Z,

Pr[hics&i] = [[Pri&].
1ES

(Mutual) independence of random variables is defined in the same way as pairwise independence.



Similar to pairwise independence, (mutually) independence is equivalent to
Vie I, VS C Z\ {Z} Pr [51 | /\jEng] =Pr [EZ] ,

again assuming that the event we condition on has non-zero probability. Further, it is easy to prove
by induction that if a collection {&;: i € Z} is (mutually) independent, then for any subset S C Z, the
collection {&;: i € S}U{E;: j € T\ S} is also (mutually) independent.

FEzample: Three random variables which are pairwise independent, but not mutually independent.
Let X ={0,1} and Y = {0, 1} be (pairwise) independent random variables taking 0/1 with probability
1/2. Thenlet Z =X ®Y (i.e.,, X “xor” Y). Then, the random variables {X,Y, Z} are pairwise inde-
pendent, but not mutually independent (knowing the outcome of any two random variables determines
the third one).

Definition 3. Let {&;: i € I} be a collection of events. An event &; is mutually independent of a set
Ujes€j of events if for every two disjoint subsets T,T C S,

Pr [gl | /\je’]'(gj) VAN (/\kGT?k)] =Pr [&] .

Note that if {&;: i € Z} is a mutually independent collection of events, then any event &; is mutually
independent of Ujer\ (3&;. However, the converse is not true, as for instance, &; could be mutually
independent of U?ZQEj while & and &3 are dependent, i.e., not pairwise independent.

2 The Lovasz Local Lemma

As indicated earlier, the Lovasz Local Lemma (LLL) deals with events that may be dependent, but
their dependencies should be rather small. To this end, we make the following definition.

Definition 4. Let £1,&s,...,&, be n events on a probability space 2. The dependency graph is a
directed graph D = (V, E) on the set of vertices V.= {1,...,n} (corresponding to &1,&s,...,E,) if for
each 1 <i < n, & is mutually independent of all the events {&;: (i,j) ¢ E}.

Note that the dependency graph is mot unique. For instance, consider two independent coin flips
with outcome H or T. Consider the events

& ={(H,H),(H,T)} (first coin flip is H),
& ={(H,H),(T,H)} (second coin flip is H),
E:={(H,H),(T.T)} (both coin flips are the same).

Then, two possible dependency graphs are as follows:



More generally, any directed graph with minimum outdegree 1 is a dependency graph.
If all events &4, ...,&, are mutually independent, then the empty graph is a dependency graph.

Theorem 5 (Lovasz Local Lemma (LLL), general case). Let &;,&,...,&, be n “bad” events on a
probability space Q) with a dependency graph D. Suppose that there are real numbers
x1,%2,...,Tn € [0,1) such that

Vi<i<n: Pr[&§l < T : | H (1—xj)
“deal probability” j: (i,j)eE

~
“penalty due to dependencies”

Then,

n

Pr (A& > (=) > 0.
i=1
Before proving the LLL, let us look at the case where the dependency graph D is emtpy, i.e., the
events &1, &y, ..., &, are mutually independent. Then,

Pr (AL &) = HPI‘ &,
i=1

so we can set z; := Pr[&;] and the statement of the LLL is tight. Hence we can think of the term
[Ti-,(1 — ;) as a “penalty factor” for dependencies among &1, &y, . .., Ey,; the larger the dependencies
among these events, the smaller the individual probabilites for £1,&s,. .., &, have to be in order for
the LLL to apply.

Proof of Theorem 5. We first prove by induction on s, that for any S C {1,...,n} with |S| = s,
Pr [& | Njes€i| < ai. (1)
Assuming that (1) holds for all 0 < s < n, the LLL follows, since

Pr 8] = [[Pe[5 | A2E)
=1

— f[ (1 — Pr [&» \ Aj;ﬁ?j}) > ﬁ(l — ;).

Hence it remains to prove (1). This is obviously true for s = 0. For the induction step, assume that
(1) holds for all s’ < s. Let S C {1,...,n} be any set of size |S| = s and i ¢ S. We partition S into
two disjoint sets:
S;i={j€8:(i,j) € E} (the dependent part),

Si=85\5; (the independent part).
By definition of conditional probabilities,
Pr (& A (NjesE)]

Pr [AjesE;]

_Pr (& N (Nesi&s) | Nesoi&5] - Pr [Ajes.,E]
- Pr [/\jesi?j | /\jESﬂ'gij] - Pr [Ajesﬂ'm
_ Pr[&i A (Nesi&) | NesoiEj]
 PrlnesE | Nesu &)

Pr [&' ’ /\jgg?j} =




We first upper bound the numerator of (2):
Pr (& A (Nesi&)) | Nes &) <Pr[& | Nes, & =Prl&] <ai- [[ (1—-y),
j: (i,5)€EE

where the equality follows since &; is mutually independent of all the events {&;: j € S—;}. Let us now
lower bound the denominator of (2). To this end, let S; = {j1,...,Jr}. If r =0, then the denominator
is 1, for r > 1 we use the induction hypothesis to obtain that

Pr[Ajes.&j | Njes. &) = [ Pr [@| (NZEG) A (/\jesﬁfj)]
k=1

=[[[1-Pr|& | (A€ A (Njes &)
k=1

~~

<r—1+4(s—r)<s—1events
IH
>[[a-zo> J] Q-
k=1 j i (2

Plugging the two bounds into (2),

L Hj: (i,j)eE(l — ;)

Pr[& | AjesE)] < _—

[ B ]] Hj: (i,j)eE(l - ;) '
which proves (1) and completes the proof. O
Corollary 6 (Lovasz Local Lemma, Symmetric Version). Let &1,...,E, be events and suppose that

each event & is mutually independent of a set of all the other events £;, j # i, except for at most d,
and suppose that Pr[&;] < p for all 1 <i <n. Then if

ep(d+1) <1,

then
Pr [A7_1&] > 0.

It was shown by Shearer in 1985 that the constant e in the inequality ep(d 4+ 1) < 1 is best possible.
One special case of Corollary 6 is when no event &; is independent of any other event £;, 1 < j < n,
e.g., all events &1,&,...,&E, are disjoint. Assume also that Pr [€;] = p for each i¢. Then,

Pr A7 &] =1—Pr [A;“;IE}

n

=1- ZPI‘ [€i] (since &, 1 < i < n, are disjoint)
i=1
=1- np,

which is greater than zero iff p < 1/n. As here, d+ 1 = n, we get a slightly worse result by Corollary 6
which requires p < 1/(en).



Proof of Corollary 6. 1f d = 0, then the result is trivial (all the events &1, ..., &, are mutually
independent). Otherwise, we have d > 0 and then the assumptions imply that there is a dependency
graph D = (V, E) for the events &1, ..., &, in which for each 1 <i <n, [{j: (i,j) € E}| < d. We
choose z; :=1/(d+ 1) < 1 for all i and we have to check that the condition of Theorem 5 is satisfied.
To see this, take any 1 <7 < n and note that

> 1 1 d> 1 1> > Prl&
CBZH (1—1‘j)_ﬁ' l=o ) 2377 :2P2 r[&].
Ji(i,4)EE

Hence, Corollary 6 follows from Theorem 5.



