Topological Methods in Discrete Geometry

Summary of Lecture 2

MPI, Summer 2011

We prove topological Radon's theorem in any dimension d : given any map $f: \partial \Delta^{d+1} \rightarrow \mathbb{R}^{d}$, there exist two points $x_{1}, x_{2} \in \partial \Delta^{d+1}$ with disjoint supports (i.e., the simplices that contain x_{1} and x_{2} are disjoint) and where $f\left(x_{1}\right)=f\left(x_{2}\right)$.
For technical reasons, we prove an equivalent statement: given any map $f: \Delta^{d+1} \rightarrow B^{d}$, there exist two points $x_{1}, x_{2} \in \Delta^{d+1}$ with disjoint supports and where $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Proof technique: As before, lets say, for contradiction, that there is a 'bad' map, i.e., a continuous map f with the property that for every two points x_{1}, x_{2} with disjoint supports, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Then if such a map f exists, we will extend it to a map on two derived spaces (with \mathbb{Z}_{2}-structure) such that it is a \mathbb{Z}_{2}-map. And then show, via calculation of their \mathbb{Z}_{2}-index, that such a \mathbb{Z}_{2}-map is impossible.

To realize this plan, we have to accomplish five things:

1. construct a derived space Y (with \mathbb{Z}_{2}-structure) for B^{d},
2. construct a derived space X (with \mathbb{Z}_{2}-structure) for Δ^{d+1},
3. construct a \mathbb{Z}_{2}-map, say $f_{\text {join }}$, from X to Y
4. upper-bounding the \mathbb{Z}_{2}-index of Y
5. lower-bounding the \mathbb{Z}_{2}-index of X

The proof would work if $\operatorname{Ind} \mathbb{Z}_{2}(X)>\operatorname{Ind}_{\mathbb{Z}_{2}}(Y)$. We now show each of these steps in order of $1,4,2,5,3$.

1. Space Y

We will take two copies of B^{d}, and embed them in $\mathbb{R}^{2 d+2}$, and add line segments from every point x in the first copy to every point y in the second copy.

Formally, let $\psi_{1}: B^{d} \rightarrow \mathbb{R}^{2 d+2}$ be the function that maps each $x \in B^{d}$ to a point $f(x) \in \mathbb{R}^{2 d+2}$. So $\psi_{1}\left(B^{d}\right)$ defines the first embedding of B^{d}, and similarly define $\psi_{2}\left(B^{d}\right)$ to be the second copy. We will have to be careful in the exact geometric embedding to ensure that

- no two line segments intersect. This would imply that each point can be written uniquely as $t \cdot \psi_{1}(x)+(1-t) \cdot \psi_{2}(y)$, where x, y are points of B^{d}, and $t \in[0,1]$ controls the position of this point lying on the segment $\overline{\psi_{1}(x) \psi_{2}(y)}$. Then each point can be written as the ordered pair (x, y, t), where x and y lie in B^{d}, and $t \in[0,1]$.
- it is geometrically placed in such a way (via functions ψ_{1} and ψ_{2}) so that the computation of \mathbb{Z}_{2}-index is technically easier afterwards.

This space is called $\operatorname{Join}\left(B^{d}\right)$. To achieve both these goals, the exact embedding is as follows. Consider the case when $d=1$: a point $x=\left(x_{1}\right), x_{1} \in \mathbb{R}$ in the first copy of B^{1} goes to the point $\left(1, x_{1}, 0,0\right) \in \mathbb{R}^{4}$. And the point $y=\left(y_{1}\right), y_{1} \in \mathbb{R}$ in the second copy of B^{1} goes to the point $\left(0,0,1, y_{1}\right) \in \mathbb{R}^{4}$.

Then each point in the line-segments between them is of the form

$$
t \cdot\left(1, x_{1}, 0,0\right)+(1-t) \cdot\left(0,0,1, y_{1}\right)=\left(t, t x_{1}, 1-t,(1-t) y_{1}\right)
$$

It is easy to see that there is a unique way to write each point in $\operatorname{Join}\left(B^{d}\right)$: given any point, the value of t is fixed by the first and third coordinates, and once t is fixed, x and y values are fixed. Therefore no two line-segments intersect.

For an arbitrary value of d : the point $x \in \mathbb{R}^{d}$ in the first copy of B^{d} goes to the point $\left(1, x_{1}, \ldots, x_{d}, 0, \ldots, 0\right) \in \mathbb{R}^{2 d+2}$ (note: there are $(d+1)$ zeroes at the end). And the point $y \in \mathbb{R}^{d}$ in the second copy of B^{d} goes to the point $\left(0, \ldots, 0,1, y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{2 d+2}$ (note: there are $(d+1)$ zeroes at the start). Again it can be verified that no two line-segments intersect.

Finally, we delete the middle point of each line segment between the same point x in the first copy and it's mirror point x in the second copy; i.e., delete the point $\frac{1}{2} \cdot \psi_{1}(x)+\frac{1}{2} \cdot \psi_{2}(x)$, for all x in B^{d}.

The remaining set of points is the final space Y.
It remains to give a \mathbb{Z}_{2}-structure to Y. That is as follows:
$(x, y, t) \Longleftrightarrow(y, x, 1-t)$. Equivalently, $t \cdot \psi_{1}(x)+(1-t) \cdot \psi_{2}(y) \Longleftrightarrow(1-t) \cdot \psi_{1}(y)+t \cdot \psi_{2}(x)$
So the point lying on the line-segment defined by the point $\psi_{1}(x)$ (i.e., from the first copy of B^{d}) and the point $\psi_{2}(y)$ (the second copy of B^{d}), and with parameter t is assigned the antipodal point lying on the line-segment defined by the point $\psi_{1}(y)$ (the first copy of B^{d}), the point $\psi_{2}(x)$ (the second copy of B^{d}), and with parameter $(1-t)$.

4. $\quad \operatorname{Ind} \mathbb{Z}_{2}(Y)$

Given our fixed embedding of Y, this is now easy: we will observe that Y is now just a $\left(\mathbb{Z}_{2}\right.$-preserving) subset of the deleted product $\left(\mathbb{R}^{d+1}\right)_{\Delta}^{2}$! As $\operatorname{Ind}_{\mathbb{Z}_{2}}\left(\left(\mathbb{R}^{d+1}\right)_{\Delta}^{2}\right) \leq d$, we get the same upper-bound on $\operatorname{In} d_{\mathbb{Z}_{2}}(Y)$.

First consider the case $d=1$. To see \mathbb{Z}_{2}-preservation, a point in Y represented by (x, y, t), say $x=\left(x_{1}\right), y=\left(y_{1}\right)$, has coordinates $\left(t, t x_{1}, 1-t,(1-t) y_{1}\right)$. And it's antipodal point, represented by $(y, x, 1-t)$, has coordinates $\left(1-t,(1-t) y_{1}, t, t x_{1}\right)$. But this is the same as the \mathbb{Z}_{2} antipodality defined on $\left(\mathbb{R}^{d+1}\right)_{\Delta}^{2}$, where a point with coordinate $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ has
antipodal point $\left(x_{3}, x_{4}, x_{2}, x_{1}\right)$. So the antipodal (under \mathbb{Z}_{2}-action on $\left.\left(\mathbb{R}^{d+1}\right)_{\Delta}^{2}\right)$ of the point with coordinates $\left(t, t x_{1}, 1-t,(1-t) y_{1}\right)$ is the point with coordinates $\left(1-t,(1-t) y_{1}, t, t x_{1}\right)$.

Finally, note that no point of Y (which are all of the form $\left.\left(t, t x_{1}, 1-t,(1-t) y_{1}\right)\right)$ maps to the (deleted) diagonal $\left(x_{1}, x_{2}, x_{1}, x_{2}\right)$, as that would imply $t=1 / 2$, and $x_{1}=y_{1}$; but we deleted all points of this type from Y.

Exactly same argument works for general d. Therefore $\operatorname{Ind}_{\mathbb{Z}_{2}}(Y) \leq d$.

2. Space X

We will construct X in a very similar manner to Y. Let $k=d+1$. Take two copies of Δ^{k}, and embed them in a high-enough \mathbb{R}^{n} such that the line-segments from a point from one copy to the point in the other copy are disjoint. Again, each point can be represented by the tuple (x, y, t). Then delete all line-segments between x in the first copy, and y in the second copy, where x and y have intersecting support.

This is the space X.
The antipodal action on X is the same as that of Y :

$$
(x, y, t) \Longleftrightarrow(y, x, 1-t)
$$

where x is a point in the first copy of Δ^{k}, and y is a point in the second copy of Δ^{k}.

3. $\quad \operatorname{In} d_{\mathbb{Z}_{2}}(X)$

We show that X is homeomorphic (with a \mathbb{Z}_{2}-map) to the crosspolytope β_{k}, where $k=d+1$.
X was made up of points represented by tuples of type (x, y, t), where x lies in the first copy of Δ^{k} and y in the second copy of Δ^{k}. Label the vertices of the first copy of Δ^{k} as p_{0}, \ldots, p_{k}, and the vertices of the second copy as q_{0}, \ldots, q_{k}, where p_{i} and q_{i} are copies of the same vertex of Δ^{k}.

Consider the following map $g: X \rightarrow \beta_{k} . g\left(p_{i}\right)=e_{i}$, and $g\left(q_{i}\right)=-e_{i}$. The rest of the map is defined by linear extension, i.e., consider a point of X represented by (x, y, t). Let $x=\sum_{i \in I} \lambda_{i} p_{i}, y=\sum_{j \in J} \mu_{j} q_{j}$. By our construction of X, we have $I \cap J=\emptyset$. Then the point denoted by (x, y, t) is the point:

$$
t \cdot x+(1-t) \cdot y=t \cdot\left(\sum_{i \in I} \lambda_{i} p_{i}\right)+(1-t) \cdot\left(\sum_{j \in J} \mu_{j} q_{j}\right), \text { where } \sum \lambda_{i}=1, \sum \mu_{i}=1
$$

and so g maps it to:

$$
\begin{aligned}
g\left(t \cdot\left(\sum_{i \in I} \lambda_{i} p_{i}\right)+(1-t) \cdot\left(\sum_{j \in J} \mu_{j} q_{j}\right)\right) & \rightarrow t \cdot\left(\sum_{i \in I} \lambda_{i} g\left(p_{i}\right)\right)+(1-t) \cdot\left(\sum_{j \in J} \mu_{j} g\left(q_{j}\right)\right) \\
& =t \cdot\left(\sum_{i \in I} \lambda_{i} e_{i}\right)+(1-t) \cdot\left(\sum_{j \in J} \mu_{j}\left(-e_{j}\right)\right)
\end{aligned}
$$

We claim that g is a homeomorphism between X and β_{k}. Furthermore, it is also a \mathbb{Z}_{2}-map; here we use our constructed \mathbb{Z}_{2}-structure on X, and the standard $x \leftrightarrow-x$ antipodality on β_{k}.

First note that indeed each point is mapped to β_{k}, as the coefficients sum up to one, i.e., $\sum t \lambda_{i}+\sum(1-t) \mu_{i}=1$. And as $I \cap J=\emptyset$, the point does lie on a face of β_{k}.
Now take any point in β_{k}, say the point $b=\sum_{i \in I} \lambda_{i} e_{i}+\sum_{j \in J} \mu_{j}\left(-e_{j}\right)$, where $\sum_{i} \lambda_{i}+\sum_{j} \mu_{j}=$ 1 , and $I \cap J=\emptyset$. Then let $t=\lambda=\sum \lambda_{i}, \mu=\sum \mu_{j}=1-t$, and consider the point

$$
x=t\left(\sum_{i \in I} \frac{\lambda_{i}}{\lambda} g^{-1}\left(e_{i}\right)\right)+(1-t)\left(\sum_{j \in J} \frac{\mu_{j}}{\mu} g^{-1}\left(-e_{j}\right)\right)=t\left(\sum_{i \in I} \frac{\lambda_{i}}{\lambda} p_{i}\right)+(1-t)\left(\sum_{j \in J} \frac{\mu_{j}}{\mu} q_{j}\right)
$$

As $\sum_{i} \lambda_{i} / \lambda=1, \sum_{j} \mu_{j} / \mu=1$, and $I \cap J=\emptyset, x$ lies in X, and clearly $g(x)=b$.
Finally, it has to be shown that g is a \mathbb{Z}_{2}-map. Therefore,

$$
(x, y, t) \Longleftrightarrow(y, x, 1-t)
$$

or in geometric coordinates

$$
t \cdot\left(\sum_{i \in I} \lambda_{i} p_{i}\right)+(1-t) \cdot\left(\sum_{j \in J} \mu_{j} q_{j}\right) \Longleftrightarrow(1-t) \cdot\left(\sum_{j \in J} \mu_{j} p_{j}\right)+t \cdot\left(\sum_{i \in I} \lambda_{i} q_{i}\right)
$$

On the other hand, applying g to both the antipodal points:

$$
t \cdot\left(\sum_{i \in I} \lambda_{i} e_{i}\right)+(1-t) \cdot\left(\sum_{j \in J} \mu_{j}\left(-e_{j}\right)\right) \Longleftrightarrow(1-t) \cdot\left(\sum_{j \in J} \mu_{j} e_{j}\right)+t \cdot\left(\sum_{i \in I} \lambda_{i}\left(-e_{i}\right)\right)
$$

Now β_{k} is homeomorphic to S^{k} (with a \mathbb{Z}_{2}-map), and S^{k} has \mathbb{Z}_{2}-index k. Therefore $\operatorname{Ind}_{\mathbb{Z}_{2}}(X)=k=d+1$.

3. $\operatorname{Map} f_{\text {join }}$ from X to Y

This is straightforward:

$$
f_{\text {join }}: X \rightarrow Y \text { is defined as } f_{\text {join }}((x, y, t)) \rightarrow(f(x), f(y), t)
$$

Note that this maps a copy of Δ^{d+1} to a copy of B^{d}. It is a \mathbb{Z}_{2}-map, as the point (x, y, t) is mapped to $(f(x), f(y), t)$, while it's antipodal point $(y, x, 1-t)$ is mapped to $(f(y), f(x), 1-t)$.

