
Topological Methods in Discrete Geometry

Summary of Lecture 2 MPI, Summer 2011

We prove topological Radon’s theorem in any dimension d: given any map f : ∂∆d+1 → Rd,
there exist two points x1, x2 ∈ ∂∆d+1 with disjoint supports (i.e., the simplices that contain
x1 and x2 are disjoint) and where f(x1) = f(x2).

For technical reasons, we prove an equivalent statement: given any map f : ∆d+1 → Bd,
there exist two points x1, x2 ∈ ∆d+1 with disjoint supports and where f(x1) = f(x2).

Proof technique: As before, lets say, for contradiction, that there is a ‘bad’ map, i.e., a
continuous map f with the property that for every two points x1, x2 with disjoint supports,
f(x1) 6= f(x2). Then if such a map f exists, we will extend it to a map on two derived
spaces (with Z2-structure) such that it is a Z2-map. And then show, via calculation of their
Z2-index, that such a Z2-map is impossible.

To realize this plan, we have to accomplish five things:

1. construct a derived space Y (with Z2-structure) for Bd,

2. construct a derived space X (with Z2-structure) for ∆d+1,

3. construct a Z2-map, say fjoin, from X to Y

4. upper-bounding the Z2-index of Y

5. lower-bounding the Z2-index of X

The proof would work if IndZ2(X) > IndZ2(Y ). We now show each of these steps in order
of 1, 4, 2, 5, 3.

1. Space Y

We will take two copies of Bd, and embed them in R2d+2, and add line segments from every
point x in the first copy to every point y in the second copy.

Formally, let ψ1 : Bd → R2d+2 be the function that maps each x ∈ Bd to a point f(x) ∈ R2d+2.
So ψ1(Bd) defines the first embedding of Bd, and similarly define ψ2(Bd) to be the second
copy. We will have to be careful in the exact geometric embedding to ensure that

• no two line segments intersect. This would imply that each point can be written
uniquely as t ·ψ1(x) + (1− t) ·ψ2(y), where x, y are points of Bd, and t ∈ [0, 1] controls
the position of this point lying on the segment ψ1(x)ψ2(y). Then each point can be
written as the ordered pair (x, y, t), where x and y lie in Bd, and t ∈ [0, 1].
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• it is geometrically placed in such a way (via functions ψ1 and ψ2) so that the compu-
tation of Z2-index is technically easier afterwards.

This space is called Join(Bd). To achieve both these goals, the exact embedding is as follows.
Consider the case when d = 1: a point x = (x1), x1 ∈ R in the first copy of B1 goes to the
point (1, x1, 0, 0) ∈ R4. And the point y = (y1), y1 ∈ R in the second copy of B1 goes to the
point (0, 0, 1, y1) ∈ R4.

Then each point in the line-segments between them is of the form

t · (1, x1, 0, 0) + (1− t) · (0, 0, 1, y1) = (t, tx1, 1− t, (1− t)y1)

It is easy to see that there is a unique way to write each point in Join(Bd): given any point,
the value of t is fixed by the first and third coordinates, and once t is fixed, x and y values
are fixed. Therefore no two line-segments intersect.

For an arbitrary value of d: the point x ∈ Rd in the first copy of Bd goes to the point
(1, x1, . . . , xd, 0, . . . , 0) ∈ R2d+2 (note: there are (d + 1) zeroes at the end). And the point
y ∈ Rd in the second copy of Bd goes to the point (0, . . . , 0, 1, y1, . . . , yd) ∈ R2d+2 (note:
there are (d + 1) zeroes at the start). Again it can be verified that no two line-segments
intersect.

Finally, we delete the middle point of each line segment between the same point x in the first
copy and it’s mirror point x in the second copy; i.e., delete the point 1

2
· ψ1(x) + 1

2
· ψ2(x),

for all x in Bd.

The remaining set of points is the final space Y .

It remains to give a Z2-structure to Y . That is as follows:

(x, y, t)⇐⇒ (y, x, 1− t). Equivalently, t ·ψ1(x) + (1− t) ·ψ2(y)⇐⇒ (1− t) ·ψ1(y) + t ·ψ2(x)

So the point lying on the line-segment defined by the point ψ1(x) (i.e., from the first copy
of Bd) and the point ψ2(y) (the second copy of Bd), and with parameter t is assigned the
antipodal point lying on the line-segment defined by the point ψ1(y) (the first copy of Bd),
the point ψ2(x) (the second copy of Bd), and with parameter (1− t).

4. IndZ2
(Y )

Given our fixed embedding of Y , this is now easy: we will observe that Y is now just a
(Z2-preserving) subset of the deleted product (Rd+1)2

∆! As IndZ2((Rd+1)2
∆) ≤ d, we get the

same upper-bound on IndZ2(Y ).

First consider the case d = 1. To see Z2-preservation, a point in Y represented by (x, y, t),
say x = (x1), y = (y1), has coordinates (t, tx1, 1 − t, (1 − t)y1). And it’s antipodal point,
represented by (y, x, 1− t), has coordinates (1− t, (1− t)y1, t, tx1). But this is the same as
the Z2 antipodality defined on (Rd+1)2

∆, where a point with coordinate (x1, x2, x3, x4) has
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antipodal point (x3, x4, x2, x1). So the antipodal (under Z2-action on (Rd+1)2
∆) of the point

with coordinates (t, tx1, 1− t, (1− t)y1) is the point with coordinates (1− t, (1− t)y1, t, tx1).

Finally, note that no point of Y (which are all of the form (t, tx1, 1 − t, (1 − t)y1)) maps
to the (deleted) diagonal (x1, x2, x1, x2), as that would imply t = 1/2, and x1 = y1; but we
deleted all points of this type from Y .

Exactly same argument works for general d. Therefore IndZ2(Y ) ≤ d.

2. Space X

We will construct X in a very similar manner to Y . Let k = d + 1. Take two copies of ∆k,
and embed them in a high-enough Rn such that the line-segments from a point from one
copy to the point in the other copy are disjoint. Again, each point can be represented by the
tuple (x, y, t). Then delete all line-segments between x in the first copy, and y in the second
copy, where x and y have intersecting support.

This is the space X.

The antipodal action on X is the same as that of Y :

(x, y, t)⇐⇒ (y, x, 1− t)
where x is a point in the first copy of ∆k, and y is a point in the second copy of ∆k.

3. IndZ2
(X)

We show that X is homeomorphic (with a Z2-map) to the crosspolytope βk, where k = d+1.

X was made up of points represented by tuples of type (x, y, t), where x lies in the first
copy of ∆k and y in the second copy of ∆k. Label the vertices of the first copy of ∆k as
p0, . . . , pk, and the vertices of the second copy as q0, . . . , qk, where pi and qi are copies of the
same vertex of ∆k.

Consider the following map g : X → βk. g(pi) = ei, and g(qi) = −ei. The rest of the
map is defined by linear extension, i.e., consider a point of X represented by (x, y, t). Let
x =

∑
i∈I λipi, y =

∑
j∈J µjqj. By our construction of X, we have I ∩J = ∅. Then the point

denoted by (x, y, t) is the point:

t · x+ (1− t) · y = t · (
∑
i∈I

λipi) + (1− t) · (
∑
j∈J

µjqj), where
∑

λi = 1,
∑

µi = 1

and so g maps it to:

g

(
t · (
∑
i∈I

λipi) + (1− t) · (
∑
j∈J

µjqj)

)
→ t · (

∑
i∈I

λig(pi)) + (1− t) · (
∑
j∈J

µjg(qj))

= t · (
∑
i∈I

λiei) + (1− t) · (
∑
j∈J

µj(−ej))
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We claim that g is a homeomorphism between X and βk. Furthermore, it is also a Z2-map;
here we use our constructed Z2-structure on X, and the standard x ↔ −x antipodality on
βk.

First note that indeed each point is mapped to βk, as the coefficients sum up to one, i.e.,∑
tλi +

∑
(1− t)µi = 1. And as I ∩ J = ∅, the point does lie on a face of βk.

Now take any point in βk, say the point b =
∑

i∈I λiei+
∑

j∈J µj(−ej), where
∑

i λi+
∑

j µj =
1, and I ∩ J = ∅. Then let t = λ =

∑
λi, µ =

∑
µj = 1− t, and consider the point

x = t(
∑
i∈I

λi

λ
g−1(ei)) + (1− t)(

∑
j∈J

µj

µ
g−1(−ej)) = t(

∑
i∈I

λi

λ
pi) + (1− t)(

∑
j∈J

µj

µ
qj)

As
∑

i λi/λ = 1,
∑

j µj/µ = 1, and I ∩ J = ∅, x lies in X, and clearly g(x) = b.

Finally, it has to be shown that g is a Z2-map. Therefore,

(x, y, t) ⇐⇒ (y, x, 1− t)
or in geometric coordinates

t · (
∑
i∈I

λipi) + (1− t) · (
∑
j∈J

µjqj) ⇐⇒ (1− t) · (
∑
j∈J

µjpj) + t · (
∑
i∈I

λiqi)

On the other hand, applying g to both the antipodal points:

t · (
∑
i∈I

λiei) + (1− t) · (
∑
j∈J

µj(−ej))⇐⇒ (1− t) · (
∑
j∈J

µjej) + t · (
∑
i∈I

λi(−ei))

Now βk is homeomorphic to Sk (with a Z2-map), and Sk has Z2-index k. Therefore
IndZ2(X) = k = d+ 1.

3. Map fjoin from X to Y

This is straightforward:

fjoin : X → Y is defined as fjoin( (x, y, t) )→ (f(x), f(y), t)

Note that this maps a copy of ∆d+1 to a copy of Bd. It is a Z2-map, as the point (x, y, t) is
mapped to (f(x), f(y), t), while it’s antipodal point (y, x, 1−t) is mapped to (f(y), f(x), 1−t).
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