Topological Methods in Discrete Geometry

Summary of Lecture 2 MPI, Summer 2011

We prove topological Radon’s theorem in any dimension d: given any map f : 0AT! — R?,
there exist two points x1, 7, € A with disjoint supports (i.e., the simplices that contain
x1 and o are disjoint) and where f(z1) = f(z2).

For technical reasons, we prove an equivalent statement: given any map f : A% — B9
there exist two points x,, 7, € A% with disjoint supports and where f(z;) = f(z3).

Proof technique: As before, lets say, for contradiction, that there is a ‘bad” map, i.e., a
continuous map f with the property that for every two points x1, x5 with disjoint supports,
f(z1) # f(x2). Then if such a map f exists, we will extend it to a map on two derived
spaces (with Zy-structure) such that it is a Zy-map. And then show, via calculation of their
Zs-index, that such a Zs-map is impossible.

To realize this plan, we have to accomplish five things:

1. construct a derived space Y (with Zy-structure) for B¢,
construct a derived space X (with Zg-structure) for AL
construct a Zo-map, say fjoin, from X to Y

upper-bounding the Zs-index of Y

A

lower-bounding the Zs-index of X

The proof would work if Indy,(X) > Indz,(Y). We now show each of these steps in order
of 1,4,2,5,3.

1. Space Y

We will take two copies of B%, and embed them in R??*2 and add line segments from every
point x in the first copy to every point y in the second copy.

Formally, let ¢ : B¢ — R?¥*2 be the function that maps each € B? to a point f(z) € R?¢*2,
So 11 (BY) defines the first embedding of B?, and similarly define 1»(B?) to be the second
copy. We will have to be careful in the exact geometric embedding to ensure that

e no two line segments intersect. This would imply that each point can be written
uniquely as t -1 (z) + (1 —t) - ¥s(y), where , y are points of B¢, and t € [0, 1] controls

the position of this point lying on the segment ¥;(x)1¥5(y). Then each point can be
written as the ordered pair (x,y,t), where x and y lie in B?, and t € [0, 1].
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e it is geometrically placed in such a way (via functions ; and 15) so that the compu-
tation of Zs-index is technically easier afterwards.

This space is called Join(B%). To achieve both these goals, the exact embedding is as follows.
Consider the case when d = 1: a point = (1), z; € R in the first copy of B! goes to the
point (1,21,0,0) € R And the point y = (y1),y; € R in the second copy of B! goes to the
point (0,0,1,y;) € R%

Then each point in the line-segments between them is of the form
t-(1,21,0,0)+ (1 —1¢)-(0,0,1,91) = (t,twy, 1 — ¢, (1 — t)y1)

It is easy to see that there is a unique way to write each point in Join(B%): given any point,
the value of ¢ is fixed by the first and third coordinates, and once ¢ is fixed, x and y values
are fixed. Therefore no two line-segments intersect.

For an arbitrary value of d: the point x € R in the first copy of B¢ goes to the point
(1,21,...,24,0,...,0) € R?*¥*2 (note: there are (d + 1) zeroes at the end). And the point
y € R? in the second copy of B? goes to the point (0,...,0,1,51,...,y4) € R**2 (note:
there are (d 4+ 1) zeroes at the start). Again it can be verified that no two line-segments
intersect.

Finally, we delete the middle point of each line segment between the same point x in the first
copy and it’s mirror point z in the second copy; i.e., delete the point 1 -9 (x) + 1 - 1s(x),
for all  in B

The remaining set of points is the final space Y.

It remains to give a Zg-structure to Y. That is as follows:

(x,y,t) <= (y,z,1 —t). Equivalently, ¢ -1 (x) + (1 —t) - a(y) <= (1 — 1) -1 (y) + ¢ - o(x)

So the point lying on the line-segment defined by the point ¢y (x) (i.e., from the first copy
of B%) and the point 1(y) (the second copy of B?), and with parameter ¢ is assigned the
antipodal point lying on the line-segment defined by the point 1;(y) (the first copy of B?),
the point 15(z) (the second copy of B?), and with parameter (1 — t).

4. ]ndZ2 (Y)

Given our fixed embedding of Y, this is now easy: we will observe that Y is now just a
(Zy-preserving) subset of the deleted product (R¥1)A! As Indz,((RT1)4) < d, we get the
same upper-bound on Indz,(Y).

First consider the case d = 1. To see Zs-preservation, a point in Y represented by (x,y,1),
say * = (x1),y = (y1), has coordinates (¢,tx1,1 —¢,(1 — t)y;). And it’s antipodal point,
represented by (y,z,1 —t), has coordinates (1 — ¢, (1 — t)y;,t,txq). But this is the same as
the Z, antipodality defined on (R4T1)%, where a point with coordinate (zy, s, 3, 74) has
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antipodal point (3,74, T9, z1). So the antipodal (under Zs-action on (R?1)2) of the point
with coordinates (t,tx1,1 —t, (1 —t)y;) is the point with coordinates (1 — ¢, (1 —t)yy, t,tx1).

Finally, note that no point of Y (which are all of the form (¢,tz1,1 — ¢, (1 — t)y;)) maps
to the (deleted) diagonal (1, xs, 1, z2), as that would imply ¢ = 1/2, and 21 = y;; but we
deleted all points of this type from Y.

Exactly same argument works for general d. Therefore Indz, (Y) < d.

2. Space X

We will construct X in a very similar manner to Y. Let & = d + 1. Take two copies of A¥,
and embed them in a high-enough R™ such that the line-segments from a point from one
copy to the point in the other copy are disjoint. Again, each point can be represented by the
tuple (z,y,t). Then delete all line-segments between x in the first copy, and y in the second
copy, where x and y have intersecting support.

This is the space X.

The antipodal action on X is the same as that of Y:
(l’,y,t) — (yv xz, 1- t)

where z is a point in the first copy of A¥, and ¥ is a point in the second copy of AF.

3. ]ndZ2 (X)

We show that X is homeomorphic (with a Zs-map) to the crosspolytope [, where k = d+ 1.

X was made up of points represented by tuples of type (x,y,t), where x lies in the first
copy of A* and y in the second copy of A¥. Label the vertices of the first copy of A* as
Do, - - -, P, and the vertices of the second copy as qq, . . ., qx, where p; and ¢; are copies of the
same vertex of AF.

Consider the following map g : X — Sr. ¢g(pi) = €;, and g(q;) = —e;. The rest of the
map is defined by linear extension, i.e., consider a point of X represented by (x,y,t). Let
T= i AiDi Y = Z]EJ ;. By our construction of X, we have INJ = (). Then the point
denoted by (z,y,t) is the point:

t-x—i—(l—t)-y:t-(z/\lpi) (1—1) Z,u]q] where Z)\—l Zpl—l

iel jeJ

and so g maps it to:

g(lf'(ZAipi) (1—1) Zm%) — OO Nglp)) + (1 =1) - O mig(ay)

el Jj€J il Jje€J
= (e + (1= 1) (X =)
il Jj€J



We claim that ¢g is a homeomorphism between X and ;. Furthermore, it is also a Zs-map;
here we use our constructed Zs-structure on X, and the standard = «+» —x antipodality on

D

First note that indeed each point is mapped to (i, as the coeflicients sum up to one, i.e.,
Sthi+ > (1 —t)u; = 1. And as I NJ = 0, the point does lie on a face of .

Now take any point in 3, say the point b = 3 ;. Aiei+3 i ; pj(—e;), where 3 5 A+ . pj =
l,and INJ =0. Thenlet t =X => A\, pu= > p; =1 —t, and consider the point
z — Ky _ )\’L Hj

Z i (1=1_ =g (—e)) =t(> TP+ (1 =80 )

iel jer M il jes M
As D N/A=13"pu/p=1,and INJ =0, x lies in X, and clearly g(z) = b.
Finally, it has to be shown that g is a Zs-map. Therefore,

(l’,y,t) — (yaxv - t)

or in geometric coordinates

t'(z)\ipi) (1-1) Z,UJQJ = (1-1) Z:ujpj )+t ZAC]z

el jedJ jeJ el

On the other hand, applying ¢ to both the antipodal points:

el jedJ ]GJ ze[
Now [ is homeomorphic to S* (with a Zy,-map), and S* has Zy-index k. Therefore
Indg,(X)=k=d+1.

3. Map fjin from X to Y

This is straightforward:

fjoin : X — Y is defined as fiom( (z,y,t) ) — (f(x), f(y),t)

Note that this maps a copy of A% to a copy of Be. It is a Zy-map, as the point (z,y,t) is
mapped to (f(z), f(y),t), while it’s antipodal point (y, z, 1—t) is mapped to (f(y), f(x), 1—t).



