Problem Set 5
 Topological Methods in Geometry

Problem 1 (No Retraction Theorem).
Prove that the following theorem is equivalent to the Brouwer's fixed point theorem: There is no continuous function $f: B^{n} \mapsto \partial B^{n}$ such that for each $x \in \partial B^{n}, f(x)=x$.

Problem 2.

In the lecture, we proved the following version of the Borsuk Ulam theorem: For any continuous function $f: I^{n} \mapsto \mathbb{R}^{n}$, where $I=[-1,1]$, which is antipodal on ∂I^{n}, there exists some $x \in I^{n}$ s.t. $f(x)=0$. Prove that if we replace I^{n} by B^{n}, the statement remains true.

Problem 3 (Radon' theorem in \mathbb{R}^{2}).
Let σ^{n} denote an n-dimensional simplex. Let $f: \sigma^{3} \mapsto \mathbb{R}^{2}$ be an affine map. Show that there are two points in σ^{3} with disjoint supports that are mapped to the same point by f.

Problem 4.

Give an example of a pseudomanifold whose boundary is not a pseudomanifold. Let M^{n} be an n-dimensional pseudomanifold whose boundary is a pseudomanifold. Prove that $\partial \partial M^{n}=\emptyset$.

