Problem Set 8
 Topological Methods in Geometry

SS 2011

Problem 1. Prove that the Radon point is unique.

Problem 2. Given $d+2$ points P in \mathbb{R}^{d}, prove that there exists a plane spanned by d points of P such that the remaining two points are on different sides of this plane.

Problem 3. Complete the proof of topological Radon's theorem for any dimension by induction.

Problem 4. Given a continuous function $f: \mathbb{S}^{1} \rightarrow \mathbb{R}$ and any two points $p, q \in \mathbb{S}^{1}$, prove that one can always rotate the two points p and q around \mathbb{S}^{1} (without changing their position relative to each other) to get the points p^{\prime} and q^{\prime} such that $f\left(p^{\prime}\right)=f\left(q^{\prime}\right)$.

Problem 5. Compute $\operatorname{Ind}_{Z_{2}}\left(\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \backslash\left\{(y, y) \forall y \in \mathbb{R}^{d}\right\}\right)$.

