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Solution for Exercise 3

Exercise 1 (oral homework, in total 8 points via test)

(a) Read, learn by heart, and understand all definitions in Sections 1.4 through 1.6 of the
Diestel book.

(b) Draw a graph G that has edge-connectivity λ(G) = 8 and (vertex-)connectivity κ(G) = 2.

Solution:

where K l denotes the complete graph on l vertices.

(c) Let G have at least 2 vertices. What do you need to show in order to prove that λ(G) ≤ 25?
Do not use the word ‘ℓ-edge-connected’ for ℓ ≥ 2 in your answer.

Solution: There is a set of at most 25 edges in E(G) whose removal disconnects G.

(d) Spell out what it means for a graph G not to be maximally acyclic (see (iv) in Exercise 3
below).

Solution: Either G is cyclic or there is an edge xy /∈ E(G) such that G+ xy is acyclic.

(e) Prove, using the classic ‘consider a longest path’ argument, that every tree has a leaf.

Solution: Let T be an arbitrary tree. Consider a longest path P := v1v2...vk in T . We show
that vk is a leaf in T . Assume vk is not a leaf in T , then it has a neighbor u 6= vk−1. Since P is
maximal (i.e. cannot be extended) we know u lies on the path P . Hence, T has a cycle. This
contradicts with the fact that it is a tree.

(f) Read and understand the proof of Corollary 1.5.3 in the Diestel book.

(g) Let T be a tree. Is it true that every graph G that satisfies δ(G) ≥ |V (T )|−1 and has girth
at least |V (T )|+ 1 contains an induced copy of T?



Solution: Yes. From Corollary 1.5.4 from Diestel we know there is a subgraph T ′ ⊆ G that
is isomorphic to T . For the sake of contradiction assume T ′ is not induced, i.e., there exists an
edge e in G that connects two vertices that are in T ′ and e is not in T ′. By Theorem 1.5.5, T ′

is maximally acyclic so T ′ + e ⊆ G contains a cycle of length less than or equal |V (T )|. This
contradicts with the assumption that G has girth at least |V (T )|+ 1.

(h) True or false: Each 4-partite graph is 5-partite.

Solution: It depends on whether we allow partition classes to be empty (Diestel doesn’t but
many other authors do in this context). If we allow empty partition classes then the statement
is true (since we can add an empty partition class). Otherwise it is false (consider K4, the
complete graph on 4 vertices).

Exercise 2 (oral homework, in total 8 points via test)

Read and fully understand the proof of Theorem 1.4.3 in the Diestel book.

Exercise 3 (written homework, 4 points)

Prove Theorem 1.5.1 in the Diestel book. I.e., show that the following assertions are equivalent
for a graph T :

(i) T is a tree.

(ii) Any two vertices of T are linked by a unique path in T .

(iii) T is a minimally connected, i.e. T is connected but T − e is disconnected for every edge
e ∈ T .

(iv) T is maximally acyclic, i.e. T contains no cycle but T +xy does, for any two non-adjacent
vertices x, y ∈ T .

Solution:

i) ⇒ ii): A tree T is an acyclic connected graph. By connectivity, there is at least one path
linking each two vertices in T . For the sake of contradiction, assume there are two different
paths P1 and P2 from vertex u to vertex v in T. Let a be the first vertex after which P1 and P2

differ (a exists since both paths start at u and are different). Let b be the first vertex after a in
P1 that is also contained in P2 (b exists since v is such a vertex). Then, aP1bP2a is a cycle in T
(because of the choice of b no vertex appears twice on this cycle), contradicting the assumption
that T is a tree.

ii) ⇒ iii): Let T be an arbitrary graph in which any two vertices are linked by a unique path.
Observe that T is connected. Suppose there exists an edge e = uv that can be removed such
that T − e is not disconnected. Then there is a path P from u to v in T − e. Then P + e will
contain two different paths between u and v, which contradicts the hypothesis.

iii) ⇒ iv): Let T be an arbitrary minimally connected graph. We first show that T is acyclic.
Suppose T is not acyclic, and C = v0v1...vkv0 is a cycle in T . Then the graph T − v0v1 is still
connected since any path in T can be transformed into a walk in T − v0v1 by replacing any



occurrence of the edge v0v1 by the path C = vkvk−1 . . . v1. Assume now that T + v0v1 is acyclic
where v0v1 is not an edge in T . Then T is not connected, because any path v0u1 . . . ukv1 in T
would give a cycle v0u1 . . . v1ukv0 in T + v0v1. This contradicts the hypothesis.

iv) ⇒ i): Let T be an arbitrary maximally acyclic graph. It is obvious that T is acyclic, so
we only need to show that T is connected. Suppose it is not connected. Then there exist two
vertices u and v in T that are not connected by a path. In particular uv /∈ T . However, then
the graph T + uv is acyclic since there is no other path from u to v that can close the cycle.
This is a contradiction to T being maximally acyclic.

Exercise 4 (written homework, 4 points)

(a) Show that in a 2-connected graph every vertex is contained in a cycle. [2P.]

Solution: Let G be a 2-connected graph. Let v be an arbitrary vertex of G. Using Prop.
1.4.2 from the Diestel book we know that G is 2-edge-connected and that v has at least two
neighbors, say u and w. Due to 2-edge-connectivity, we know G−uv is connected. Hence there
exists a path from u to v in G− uv, and Pvu is a cycle in G containing v.

(b) Let G be a graph. Show that G and its complement G cannot have both diameter larger
than 3. [2P.]

Solution: If the graph G has diameter at most 3 then we are done.
Suppose G has a diameter greater than 3. We have to prove that G has diameter at most 3, i.e.,
that any two vertices are connected by a path of length at most 3 in G. If G is disconnected
then diam(G) ≤ 3 will hold, because in G all vertices from G that lie in different components
will be connected by an edge, and each 2 vertices in the same component will be connected to
a common vertex from a different component, inducing a path of length 2. (Thus in this case,
we even have diam(G) ≤ 2.)

If G is connected with diameter greater than 3, then there is a path P of length greater than 3
in G. Call its endpoints u and v. The graph G will surely contain the edge uv. In G any vertex
different from u and v is adjacent to u or to v because there is no path of length 2 connecting
u and v in G. Let x and y be any two vertices different from u and v. If they share u or v as
a common neighbor in G, then xuy or xvy is a path connecting them in G. Otherwise, xvuy
or xuvy is a path connecting them in G. In any case x and y have distance at most 3. Our
argument also shows that every vertex x has distance at most 2 from u and v.


