
Litt litt litt is place und b and
the litt is place und b and
the litt
$$3|L_{in}|-6$$
 of most edge in Lin $3|L_{in}|-6 = 4|L_i|$
E> $|L_{in}| = \frac{4}{3}|L_i|+2$
Stable Set of Derivatives:
Mathematical distances:
There orce 5- orientations:
Down of a differ in ab most 3/g n edges.
Proof: Const. orientations:
Const. orientation:
Const.

-8-Count # of reorientations ! G Thin i As & is bransformed From Go to Gik, the fotal number if reordentations is O(n+ klogn) Ô-orientation maintained by algorithm Dyn. changing G O(G)-static 5-orientation of G Detime potential terre. $\phi(G, \hat{o}) = |\hat{o} - O(G)| \leq m$ Edge to good if it has the same orders. In both 1. 1 Edge is good if it has the same ordens. In both else bad. Effect of deletion or contraction on O(G): \$ increases by at most 3logn Effect of ______ of per operation of while -loop # good edges turning bad = 5 # good $\geq 15-5=10$ { total effect on ϕ is decread by ≥ 5 Total decrease of \$: 1. ideal = m, m+ K-3 logn 11- tobal # of iteration K - tobal # of iterations =) = M+ K=3/logn # dodal number 5 of sterations of sterations lotal number of rearlenter froms from good to bad: M + K 3 Logn from bad to good: = m + m + K3 logn = O(n + Klyn) Existence of Forrentation (169 not computed) but H can be by Euler Formula. Elsed as comparison work & (just measure 12.).

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
NO NO Lot edges not NO NO de cycles (b+part+tion)
No cut, as cut-edges form bipartite graph If all edge-weights negative => EP by min-cut (Max luf is NP-C)
2-Approx. For every vertex VOV, assign V to W with prob. 1/2 Thim. The expected size of cut is m/2 [E(size of cut) = 11/2]
Thus. The expected size of cut is $\frac{1}{2}$ $\begin{bmatrix} E(size of cut) = \frac{1}{2} \end{bmatrix}$ Consider Hedge: He $\in E$, there are 4 outcomes: $\begin{bmatrix} u \\ u \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ u \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ u \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ v \\ u \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ v \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ v \\ v \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ v \\ v \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ v \\ v \\ v \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ v \\ v \\ v \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\ v \\ v \\ v \\ v \\ v \end{bmatrix}$ $\begin{bmatrix} u \\ v \\$
$E\left[stre df cut\right] \stackrel{*}{=} \frac{Z}{2} \frac{1}{2} = \frac{m_{2}}{2}$ for $bin. of expect.$
Max Cit in Planar cuts: JAlg with O(ne) Cut represented as a bit vector of edges (1) if talge is cut edge, O else) Dim. of cut vector is [E]. Set of all possible cut vectors = Cut Space (Z2)
Thim: The cut-space is a vector space - neutral element O - Inverse element wrt addition over Z2 of V: V+V=O - commuse the - closed under multiplication - closed under addition

