
Dynamic Connectivity

Ran Duan

In this talk

 Concept of dynamic algorithms

 Dynamic connectivity of O(log2n) amortized update time

 Decremental minimum spanning tree

Dynamic Problems

 Find algorithms and data structures to answer a certain

query about a set of input objects where each time the

input data is modified.

Dynamic Graph

 Fully dynamic model: we can insert and delete edges to

the graph G

 Decremental model: only deletions

 Incremental model: only insertions

About dynamic algorithms

 Measures of complexity:

 Memory space to store the required data structures

 Initial construction time for the data structure

 Insertion/deletion time: time required to modify the data

structure

 Update time

 Query time: time needed to answer an query

Amortized analysis

 For a sequence of updates, count the average time

needed per each update.

 Some updates may require much longer time

 Only happen infrequently

Connectivity Problem

 In an undirected graph G, judge whether any two vertices

are connected by a path.

Dynamic Connectivity

 We can insert or delete edges in this graph, and still find

the connectivity of any pair of vertices.

Dynamic Connectivity

 We can insert or delete edges in this graph, and still find

the connectivity of any pair of vertices.

Connectivity and spanning forest

 Spanning forest F: there is a spanning tree in each

connected component

 Connectivity: check whether u,v are in the same spanning

tree of F.

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Inserting (u,v):

 When u,v are in the same tree, F do not change

 When u,v are not in the same tree, connect these trees to a

bigger tree

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Dynamic Connectivity

 Maintain the spanning forest dynamically

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Holm, Lichtenberg & Thorup’s structure

 O(log2n) amortized update time

 Best amortized update time so far.

 Appears in STOC’98

High-level description

 Each edge e is assigned a level l(e). (0≤l(e)≤lmax)

 Ei={edges of level ≥ i}

 So E=E0⊇E1⊇…⊇Elmax

Level 2

Level 1

Level 0

E0

E1

E2

High-level description

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi

 if e is a tree edge in Fi, it must be a tree edge in Fj (j<i)

 Also, the number of vertices of a tree in Fi is at most n/2i

 These properties are maintained throughout the

algorithm.

High-level description

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi

 if e is a tree edge in Fi, it must be tree edge in Fj (j<i)

 Also, the number of vertices of a tree in Fi is at most n/2i

 The sizes of connected components decrease by a half when

level increases

 So lmax=O(log n)

 These properties are maintained throughout the

algorithm.

Example

Example – tree edge

 level ≥2

 level 1

 level 0

Remind

 Inserting (u,v):

 When u,v are in the same tree, F do not change

 When u,v are not in the same tree, connect these trees to a

bigger tree

 Deleting a tree edge (u,v):

 The tree will be split into two parts

 We need to find other edges reconnecting these two parts

Algorithm

 Initially the graph is empty

 Level of an edge only increases, never decreases

 When we have checked the edge, its level increases

 Only increases for lmax=O(log n) times

 So the amortized time for an edge is very small.

Algorithm

 Insert(e):

 l(e)=0, if its two ends are not connected in F0, e is added to F0

 Delete(e):

 If e is not a tree edge at level l(e), simply delete e

 If e is a tree edge, delete it in F0, F1,…,Fl(e),

 and call Reconnect(e, l(e))

Algorithm

 Insert(e):

 l(e)=0, if its two ends are not connected in F0, e is added to F0

 Delete(e):

 If e is not a tree edge at level l(e), simply delete e

 If e is a tree edge, delete it in F0, F1,…,Fl(e),

 and call Reconnect(e, l(e))

 Spanning forests F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

So when e is not a tree edge at its level l(e),

it can not be a tree edge at other levels.

Algorithm

 Reconnect((u,v),i) – reconnect trees containing u and v by

edges of level i

 T– original tree in Fi containing (u,v),

 T(u),T(v)– trees in Fi containing u,v after deletion of (u,v)

 One of T(u),T(v) has at most a half as many vertices as T,

assume it is T(u), move T(u) to level i+1

 Check level i edges f incident to T(u) one by one, either:

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

 If no such edges are found, call Reconnect((u,v),i-1)

 If i=0, we conclude that there is no reconnecting edges.

Algorithm

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1 (since |T(u)|≤½|T|)

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

Algorithm

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

Algorithm

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

Bound the reconnecting time

 In one update we may need to check all the edges associated

with a subtree T(u)

 But after checking an edge, its level increases, so every edge

can be checked O(log n) times

 If initially the graph is empty, the number of edges is at most

the number of update, so we need to check O(log n) edges

per update.

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi

 if e is a tree edge in Fi, it must be tree edge in Fj (j<i)

 Also, the number of vertices of a tree in Fi is at most n/2i

 These properties hold after the update algorithm

Example

 F0, F1, F2: (non-tree edges are shown only in their levels)

Example

 Deleting a tree edge:

Example

 Call Reconnect(e,l(e))

Example

 Check for an edge whether it can reconnect them

Example

 Remove it to higher level

Example

 Call reconnect in lower level

Implementation

 We need to keep dynamic forest

 Merge two tree by an edge

 Split a tree into two subtrees

 Find the tree containing a given vertex

 Return the size of a tree

 Min-key: returns the minimal key in a tree

 These operations can all be done in O(log n) time.

ET-trees

 Euler Tour of T:

 Every vertex can appear many times in the Euler Tour, but

we only keep any one of them for each vertex to form a

ET-list：

 v1，v2，… vn

When we delete a tree edge, the ET-list will be

divided into ≤3 parts, and we need to merge two

lists.

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11



(v1，v2，v3，v4，v5，v10，v11); (v6，v7，v8，v9)

When we connect two trees by an edge, we need

to split the ET-lists of the two trees from the

vertices on that edge …

(v1，v2，v3，v4，v5), (v6，v7)

(u1), (u2，u3，u4)

When we connect two trees by an edge, we need

to split the ET-lists of the two trees from the

vertices on that edge, and merge them in the

right order.

(v1，v2，v3，v4，v5), (v6，v7); (u1), (u2，u3，u4)


(v1，v2，v3，v4，v5，u2，u3，u4，u1，v6，v7)

Euler Tour

 Euler Tour of T:

 So we only need O(1) link & cut operations to maintain the

ET-lists per tree merging or splitting.

 However, we need balanced binary trees to keep the ET-lists,

so it takes O(log n) time to rebalancing after a update,

Self-balancing binary search tree

 Automatically keep its height O(log n)

Self-balancing binary search tree

 Need O(log n) time to rebalancing

 O(log n) time to find the root from a vertex

 Every vertex can store the size or min-key of its subtree,

so these information can be maintained in O(log n) time

per update.

ET-tree

 We need to keep dynamic forest

 Merge two tree by an edge

 Split a tree into two subtrees

 Find the tree containing a given vertex

 Return the size of a tree

 Min-key: returns the minimal key in a tree

 These operations can all be done in O(log n) time.

Back to dynamic connectivity

 If initially the graph is empty, the number of edges is at

most the number of update, so we need to check O(log n)

edges per update.

 Since merging two trees takes O(log n) time, and an edge

can merge trees in O(log n) levels, so the amortized

update time is O(log2n)

Back to dynamic connectivity

 If initially the graph is empty, the number of edges is at

most the number of update, so we need to check O(log n)

edges per update.

 Since merging two trees takes O(log n) time, and an edge

can merge trees in O(log n) levels, so the amortized

update time is O(log2n).

 Deletion can cost O(log2n) time.

 Delete an edge in lmax trees

 Query time: O(log n/loglog n)

 Space: O(m+nlog n) (almost linear)

Dynamic Minimum Spanning Tree

 Much more complicated since we need to consider the

order of edges

 Decremental minimum spanning tree

 Only a modification from dynamic connectivity structure

 Only support deletions

Algorithm

 Originally we have a MST F0 at level 0

 Delete(e):

 If e is not a tree edge at level l(e), simply delete e

 If e is a tree edge, delete it in F0, F1,…,Fl(e),

 and call Reconnect(e, l(e))

Spanning forests F=F0⊇F1⊇…⊇Flmax on

E0,E1,…,Elmax

So when e is not a tree edge at level l(e), it

can not be a tree edge at other levels.

Algorithm

 Reconnect((u,v),i) – reconnect trees containing u and v by

edges of level i

 T– original tree containing (u,v),

 T(u),T(v)– trees containing u,v after deletion of (u,v)

 One of T(u),T(v) has at most a half as many vertices as T,

assume it is T(u), move T(u) to level i+1

 Check level i edges f incident to T(u) in increasing order,

 f does not connect T(u) and T(v), then it must be included in T(u),

increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

 If no such edges are found, call Reconnect((u,v),i-1)

 If i=0, we conclude that there is no reconnecting edges.

Algorithm

 Reconnect((u,v),i) – reconnect trees containing u and v by
edges of level i

 T– original tree containing (u,v),

 T(u),T(v)– trees containing u,v after deletion of (u,v)

 One of T(u),T(v) has at most a half as many vertices as T,
assume it is T(u), move T(u) to level i+1

 Check level i edges f incident to T(u) in increasing order,

 f does not connect T(u) and T(v), then it must be included in T(u),
increase its level to i+1

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi

 If no such edges are found, call Reconnect((u,v),i-1)

 If i=0, we conclude that there is no reconnecting edges.

 Intuitively, we can see we find the minimum edge which reconnects the
two subtrees.

Example

Example

Example

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax

on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

)(min)(

)(max)(

flel

fwew

Cf

Cf









Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax

on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

)(min)(

)(max)(

flel

fwew

Cf

Cf









Proof of correctness

 Assume (3), the lightest replacement edge is on the

maximum level

 The algorithm maintains (3)

Proof of correctness

 Assume (3), the lightest replacement edge is on the

maximum level

 Compare two replacement edges e1, e2, if w(e1)≤w(e2), we

need to prove l(e1)≥l(e2)

 e1, e2 can form cycles C1, C2 with the original tree

Proof of correctness

 Assume (3), the lightest replacement edge is on the

maximum level

 Compare two replacement edges e1, e2, if w(e1)≤w(e2), we

need to prove l(e1)≥l(e2)

 e1, e2 can form cycles C1, C2 with the original tree

 e1, e2 must be largest edges in C1, C2, resp. Otherwise original tree is

not minimum

 Assume (3), the lightest replacement edge is on the

maximum level

 Compare two replacement edges e1, e2, if w(e1)<w(e2), we

need to prove l(e1)≥l(e2)

 e1, e2 can form cycles C1, C2 with the original tree

 e1, e2 must be largest edges in C1, C2, resp. Otherwise original tree is

not minimum

 C=C1⊕C2 is also a cycle with e1 and e2, and w(e2) is the

largest in C, so l(e2) is lowest.

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Proof of correctness

 The algorithm maintains (3):

 When the level of e increases, e is in T(u)

 Assume e is the unique lowest largest edge on some cycle C

 All other edges of C incident to T(u) have level >l(e)

 C cannot leave T(u)

 So all other edges in C have level >l(e), so (3) is maintained when l(e)

increases by 1

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Proof of correctness

 The algorithm maintains (3):

 When the level of e increases, e is in T(u)

 Assume e is the unique lowest largest edge on some cycle C

 All other edge of C incident to T(u) have level >l(e)

 C cannot leave T(u) (Otherwise there will be a replacement found.)

 So all other edges in C have level >l(e), so (3) is maintained when l(e)

increases by 1

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Update time

 Only need to maintain min-key in ET-tree structure

 Update time for this decremental MST is still O(log2n)

Discussion

 Why is it hard to extend this to fully dynamic MST?

 Unlike connectivity structures, we may need to change the

forest when inserting an edge.

 Totally breaking the order of the structure

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

 If we insert an edge with very small weight:



w(e) max fC w(f)

l(e) max fC l(f)

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

 If we insert an edge with very small weight:

 The MST will change, so as MST in higher

 levels



w(e) max fC w(f)

l(e) max fC l(f)

Invariants

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax

2. The number of vertices of a tree in Fi is at most n/2i

3. Every cycle C has a non-tree edge e with:

 If we insert an edge with very small weight:

 The MST will change, so as MST in higher

 levels

 Level decreasing will destroy the hierarchy



w(e) max fC w(f)

l(e) max fC l(f)

Too large for this

level if we add the

new edge here.

Originally this edge at level

2, but we need to decrease

this level after update

Fully dynamic MST

 An O(log4n) amortized update time structure is given in:

 “Poly-logarithmic deterministic fully-dynamic algorithms for

connectivity, minimum spanning tree, 2-edge, and biconnectivity”

 By Holm, Lichtenberg, Thorup, Jounral of ACM 2001

 Construct smaller decremental structure every time

 Complicated analysis

Overview of Dynamic Connectivity Results

 Edge update—amortized time

 Holm, Lichtenberg, and Thorup: O(log2n)

 Edge update—worst-case

 Frederickson, Eppstein et al: O(n1/2)

Dynamic Subgraph Model

 There is a fixed underlying graph G, every vertex in G is

in one of the two states “on” and “off”.

 Construct a dynamic data structure:

 Update: Switch a vertex “on” or “off”.

 Query: For a pair (u,v), answer connectivity/shortest path

between u and v in the subgraph of G induced by the “on”

vertices.

Dynamic Connectivity

Edge Updates Vertex Updates (Subgraph)

Amortized O(log2n)
[Holm, Lichtenberg & Thorup
’1998]

Õ(m2/3), with query time Õ(m1/3)
[Chan, Pâtraşcu & Roditty ‘2008]

Worst-Case O(n1/2)
[O(m1/2) by Frederickson ’1985]
[Improved by Eppstein, Galil,
Italiano, Nissenzweig ‘1992]

Õ(m4/5), with query time Õ(m1/5)
[Duan 2010]

d-failure Model

 d-failure model:

 The number of “failed” vertices/edges is bounded by d

 It can be seen as a static structure, in which the query (u,v) is

given with a set D of “failed” vertices/edges and |D|≤ d

Next lecture

 Worst-case dynamic connectivity

