Dynamic Connectivity

Ran Duan

In this talk

» Concept of dynamic algorithms
» Dynamic connectivity of O(log?n) amortized update time

» Decremental minimum spanning tree

Dynamic Problems

» Find algorithms and data structures to answer a certain
query about a set of input objects where each time the
input data is modified.

Dynamic Graph

» Fully dynamic model: we can insert and delete edges to
the graph G

» Decremental model: only deletions

» Incremental model: only insertions

About dynamic algorithms

» Measures of complexity:
Memory space to store the required data structures
Initial construction time for the data structure

Insertion/deletion time: time required to modify the data
structure

Update time
Query time: time needed to answer an query

Amortized analysis

» For a sequence of updates, count the average time
needed per each update.

Some updates may require much longer time

Only happen infrequently

Connectivity Problem

» In an undirected graph G, judge whether any two vertices
are connected by a path.

Dynamic Connectivity

» We can insert or delete edges in this graph, and still find
the connectivity of any pair of vertices.

Dynamic Connectivity

» We can insert or delete edges in this graph, and still find
the connectivity of any pair of vertices.

Connectivity and spanning forest

» Spanning forest F: there is a spanning tree in each
connected component

» Connectivity: check whether u,v are in the same spanning
tree of F

Dynamic Connectivity

» Maintain the spanning forest dynamically
» Inserting (u,v):
When u,v are in the same tree, F do not change

When u,v are not in the same tree, connect these trees to a
bigger tree

Dynamic Connectivity

» Maintain the spanning forest dynamically
» Deleting a tree edge (u,v):
The tree will be split into two parts
We need to find other edges reconnecting these two parts

Dynamic Connectivity

» Maintain the spanning forest dynamically
» Deleting a tree edge (u,v):
The tree will be split into two parts
We need to find other edges reconnecting these two parts

Dynamic Connectivity

» Maintain the spanning forest dynamically
» Deleting a tree edge (u,v):
The tree will be split into two parts
We need to find other edges reconnecting these two parts

Dynamic Connectivity

» Maintain the spanning forest dynamically
» Deleting a tree edge (u,v):
The tree will be split into two parts
We need to find other edges reconnecting these two parts

Holm, Lichtenberg & Thorup’s structure

» O(log?n) amortized update time

» Best amortized update time so far.
» Appears in STOC’98

High-level description

» Each edge e is assigned a level I(e). (0<I(e)=l
» E={edges of level 2 i}
» So E=E,2E,2...2E

max)
Imax

= Level 2
E, c?#######:[Level |

Level O

High-level description

» We keep the set of spanning forest F=F,2F 2...2F
E.E,,....E

if e=(u,v) is a non-tree edge in E, u and v are connected in F.

Imax on

Imax

if e is a tree edge in F, it must be a tree edge in F; (j<i)

» Also, the number of vertices of a tree in F; is at most n/2!

» These properties are maintained throughout the
algorithm.

High-level description

» We keep the set of spanning forest F=F,2F 2...2F
E.E,,....E

if e=(u,v) is a non-tree edge in E, u and v are connected in F.

Imax on

Imax

if e is a tree edge in F, it must be tree edge in F, (j<i)

» Also, the number of vertices of a tree in F; is at most n/2!

The sizes of connected components decrease by a half when
level increases

Sol_,.=O(log n)
» These properties are maintained throughout the
algorithm.

Example

Example — tree edge

» level 22
» level |
» level O

Remind

» Inserting (u,v):
When u,v are in the same tree, F do not change

When u,v are not in the same tree, connect these trees to a
bigger tree

» Deleting a tree edge (u,v):
The tree will be split into two parts

We need to find other edges reconnecting these two parts

Algorithm

» Initially the graph is empty
» Level of an edge only increases, never decreases
When we have checked the edge, its level increases

Only increases for | . =O(log n) times

So the amortized time for an edge is very small.

Algorithm

» Insert(e):

|(e)=0, if its two ends are not connected in F, e is added to F,

» Delete(e):
If e is not a tree edge at level I(e), simply delete e
If e is a tree edge, delete it in Fy, F,...,Fyq),

and call Reconnect(e, l(e))

Algorithm

» Insert(e):
|(e)=0, if its two ends are not connected in F, e is added to F,
» Delete(e):

If e is not a tree edge at level I(e), simply delete e
If e is a tree edge, delete it in Fy, F,...,Fyq),
and call Reconnect(e, l(e))

Spanning forests F=F,2F,2...2F, . on
Eo.Eps--.,E

»=Imax

So when e is not a tree edge at its level I(e),
it can not be a tree edge at other levels.

Algorithm

» Reconnect((u,v),i) — reconnect trees containing u and v by
edges of level i
T— original tree in F, containing (u,v),
T(u), T(v)—trees in F, containing u,v after deletion of (u,v)

One of T(u), T(v) has at most a half as many vertices as T,
assume it is T(u), move T(u) to level i+

Check level i edges f incident to T(u) one by one, either:

f does not connect T(u) and T(v), then it must be included in T(u),
increase its level to i+|

f connect T(u) and T(v), stop the search,and add f to Fy, F,,...,F.
If no such edges are found, call Reconnect((u,v),i-1)

If i=0, we conclude that there is no reconnecting edges.

Algorithm

f does not connect T(u) and T(v), then it must be included in T(u),
increase its level to i+ (since [T(u)|="2|T|)

f connect T(u) and T(v), stop the search,and add f to F, F,,...,F,

Algorithm

f does not connect T(u) and T(v), then it must be included in T(u),
increase its level to i+

f connect T(u) and T(v), stop the search,and add f to F,, F,,...,F.

Algorithm

f does not connect T(u) and T(v), then it must be included in T(u),
increase its level to i+

f connect T(u) and T(v), stop the search,and add f to F,, F,,...,F.

Bound the reconnecting time

» In one update we may need to check all the edges associated
with a subtree T(u)

» But after checking an edge, its level increases, so every edge
can be checked O(log n) times

» If initially the graph is empty, the number of edges is at most
the number of update, so we need to check O(log n) edges
per update.

» We keep the set of spanning forest F=F,2F 2...2F
E.E,,....E

if e=(u,v) is a non-tree edge in E, u and v are connected in F.

Imax on

Imax

if e is a tree edge in F, it must be tree edge in F, (j<i)

» Also, the number of vertices of a tree in F; is at most n/2!

» These properties hold after the update algorithm

Example

» Fo, F|, F5: (non-tree edges are shown only in their levels)

Example

» Deleting a tree edge:

Example

» Call Reconnect(e,l(e))

RSN,
1'@ ¥]

SSENE

Example

» Check for an edge whether it can reconnect them

Example

» Remove it to higher level

AN
-

Example

» Call reconnect in lower level

Implementation

» We need to keep dynamic forest
Merge two tree by an edge
Split a tree into two subtrees
Find the tree containing a given vertex
Return the size of a tree

Min-key: returns the minimal key in a tree

» These operations can all be done in O(log n) time.

ET-trees

» Euler Tour of T:

» Every vertex can appear many times in the Euler Tour, but
we only keep any one of them for each vertex to form a

ET-list:

Vis Vo ...V

When we delete a tree edge, the ET-list will be
divided into <3 parts, and we need to merge two
lists.

Vl’ V2’ V3’ V4’ V5) V6) V7’ V8’ V9’ VlO’ Vll

(Vi» Vos Vi35 V4 Vo, Vigs Vi) (Vg Vs Vgs Vo)

When we connect two trees by an edge, we need
to split the ET-lists of the two trees from the
vertices on that edge ...

(Vi» Vos V3o Vg4 Vi), (Vg V7)

(Ug), (Uys Ugs Uy)

When we connect two trees by an edge, we need
to split the ET-lists of the two trees from the
vertices on that edge, and merge them in the
right order.

(V15 Vys Vi35 Vys Vi), (vg V-); (Uy), (Uys Ugs Uy)

(Vi» Vys Vgs V45 Ve Uy Ug, Uy Ugs Vgs Vo)

Euler Tour

» Euler Tour of T:

» So we only need O(1) link & cut operations to maintain the
ET-lists per tree merging or splitting.

» However, we need balanced binary trees to keep the ET-lists,
so it takes O(log n) time to rebalancing after a update,

Self-balancing binary search tree

» Automatically keep its height O(log n)

/\
dpd » s 5w

pe B 0O B
@

Self-balancing binary search tree

» Need O(log n) time to rebalancing
» O(log n) time to find the root from a vertex

» Every vertex can store the size or min-key of its subtree,
so these information can be maintained in O(log n) time
per update.

ET-tree

» We need to keep dynamic forest
Merge two tree by an edge
Split a tree into two subtrees
Find the tree containing a given vertex
Return the size of a tree

Min-key: returns the minimal key in a tree

» These operations can all be done in O(log n) time.

Back to dynamic connectivity

» If initially the graph is empty, the number of edges is at
most the number of update, so we need to check O(log n)

edges per update.

» Since merging two trees takes O(log n) time, and an edge
can merge trees in O(log n) levels, so the amortized
update time is O(log?n)

Back to dynamic connectivity

» If initially the graph is empty, the number of edges is at
most the number of update, so we need to check O(log n)
edges per update.

» Since merging two trees takes O(log n) time, and an edge
can merge trees in O(log n) levels, so the amortized
update time is O(log?n).

» Deletion can cost O(log?n) time.

Delete an edge in | . trees

» Query time: O(log n/loglog n)

» Space: O(m+nlog n) (almost linear)

Dynamic Minimum Spanning Tree

» Much more complicated since we need to consider the
order of edges
» Decremental minimum spanning tree
Only a modification from dynamic connectivity structure

Only support deletions

Algorithm

» Originally we have a MST F, at level O

» Delete(e):
If e is not a tree edge at level I(e), simply delete e
If e is a tree edge, delete it in Fy, F,....Fq,

and call Reconnect(e, I(e))

Spanning forests F=F,2F,2...2F, . on
EO’EI" y "Elmax

So when e is not a tree edge at level I(e), it
can not be a tree edge at other levels.

Algorithm

» Reconnect((u,v),i) — reconnect trees containing u and v by
edges of level i
T— original tree containing (u,v),
T(u),T(v)— trees containing u,v after deletion of (u,v)

One of T(u), T(v) has at most a half as many vertices as T,
assume it is T(u), move T(u) to level i+

Check level i edges f incident to T(u) in increasing order,

f does not connect T(u) and T(v), then it must be included in T(u),
increase its level to i+|

f connect T(u) and T(v), stop the search,and add f to Fy, F,,...,F.
If no such edges are found, call Reconnect((u,v),i-1)

If i=0, we conclude that there is no reconnecting edges.

Algorithm

» Reconnect((u,v),i) — reconnect trees containing u and v by
edges of level i
T— original tree containing (u,v),
T(u),T(v)— trees containing u,v after deletion of (u,v)

One of T(u),T(v) has at most a half as many vertices as T,
assume it is T(u), move T(u) to level i+

Check level i edges f incident to T(u) in increasing order,

f does not connect T(u) and T(v), then it must be included in T(u),
increase its level to i+|

f connectT(u) and T(v), stop the search,and add f to Fy, F,,...,F,
If no such edges are found, call Reconnect((u,v),i-1)

If i=0, we conclude that there is no reconnecting edges.

Intuitively, we can see we find the minimum edge which reconnects the
two-subtrees:.

Example

Example

Example

Invariants

We keep the set of spanning forest F=F,2F 2...2F
on EyE|,...,E

Imax
Imax

The number of vertices of a tree in F. is at most n/2'

Every cycle C has a non-tree edge e with:
w(e) = max,.. w(f)

l(e) =min,_. I(f)

Invariants

We keep the set of spanning forest F=F,2F 2...2F
on EyE|,...,E

Imax
Imax

The number of vertices of a tree in F. is at most n/2'

Every cycle C has a non-tree edge e with:
w(e) = max,.. w(f)

l(e) =min,_. I(f)

Proof of correctness

» Assume (3), the lightest replacement edge is on the
maximum level

» The algorithm maintains (3)

Proof of correctness

» Assume (3), the lightest replacement edge is on the
maximum level

Compare two replacement edges e, e,, if w(e,|)sw(e,), we
need to prove l(e|)2l(e,)

e, e, can form cycles C,, C, with the original tree

Proof of correctness

» Assume (3), the lightest replacement edge is on the
maximum level

Compare two replacement edges e, e,, if w(e,|)sw(e,), we
need to prove l(e|)2l(e,)

e, e, can form cycles C,, C, with the original tree

e,, e, must be largest edges in C,, C,, resp. Otherwise original tree is
not minimum

» Assume (3), the lightest replacement edge is on the
maximum level
Compare two replacement edges e, e,, if w(e,)<w(e,), we
need to prove l(e|)2l(e,)
e, e, can form cycles C,, C, with the original tree

e,, €, must be largest edges in C,, C,, resp. Otherwise original tree is
not minimum

C=C,DGC, is also a cycle with e, and e,, and w(e,) is the
largest in C, so I(e,) is lowest.

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Proof of correctness

» The algorithm maintains (3):

» When the level of e increases, e is in T(u)

Assume e is the unique lowest largest edge on some cycle C

All other edges of C incident to T(u) have level >I(e)
C cannot leave T(u)

So all other edges in C have level >I(e), so (3) is maintained when [(e)
increases by |

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Proof of correctness

» The algorithm maintains (3):

» When the level of e increases, e is in T(u)

Assume e is the unique lowest largest edge on some cycle C

All other edge of C incident to T(u) have level >|(e)
C cannot leave T(u) (Otherwise there will be a replacement found.)

So all other edges in C have level >I(e), so (3) is maintained when [(e)
increases by |

(3) Every cycle C has a non-tree edge e with largest weight and lowest level

Update time

» Only need to maintain min-key in ET-tree structure

» Update time for this decremental MST is still O(log?n)

Discussion

» Why is it hard to extend this to fully dynamic MST?

Unlike connectivity structures, we may need to change the
forest when inserting an edge.

Totally breaking the order of the structure

Invariants

I. We keep the set of spanning forest F=F,2F,2...2F .. on E,E,,...,E

»=Imax

=" Imax

2. The number of vertices of a tree in F. is at most n/2!
3. Every cycle C has a non-tree edge e with:
w(e) =max . w(f)
l(e) =max , . I(f)

» If we insert an edge with very small weight:

Invariants

I. We keep the set of spanning forest F=F,2F,2...2F .. on E,E,,...,E

»=Imax

=" Imax

2. The number of vertices of a tree in F. is at most n/2!
3. Every cycle C has a non-tree edge e with:
w(e) =max . w(f)
l(e) =max , . I(f)

» If we insert an edge with very small weight:
» The MST will change, so as MST in higher

levels

Invariants Too large for this

level if we add the

I. We keep the set of spanning forest F=F,2F 2...2F_ . "W edg_e he"‘f_-_

X

2. The number of vertices of a tree in F. is at most n/2! ‘
3. Every cycle C has a non-tree edge e with: P e
w(e) =max ,_- w(f) > (
fe€ Originally this edge at level . Y
l(e) = max ... I(f) 2, but we need to decrease i\‘o\\ ® _,,Ii
this level after update o o S

» If we insert an edge with very small weight:
» The MST will change, so as MST in higher
levels

» Level decreasing will destroy the hierarchy

Fully dynamic MST

» An O(log*n) amortized update time structure is given in:

“Poly-logarithmic deterministic full;-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and biconnectivity”

By Holm, Lichtenberg, Thorup, Jounral of ACM 2001

Construct smaller decremental structure every time
Complicated analysis

Overview of Dynamic Connectivity Results

» Edge update—amortized time
Holm, Lichtenberg, and Thorup: O(log?n)

» Edge update—worst-case

Frederickson, Eppstein et al: O(n'%)

Dynamic Subgraph Model

» There is a fixed underlying graph G, every vertex in G is
in one of the two states “on” and “off”.

» Construct a dynamic data structure:
Update: Switch a vertex “on” or “off”.

Query: For a pair (u,v), answer connectivity/shortest path
between u and v in the subgraph of G induced by the “on”
vertices.

Dynamic Connectivity

_ Edge Updates Vertex Updates (Subgraph)

Amortized O(log?n) O(m2/3), with query time O(m?/3)
[Holm, Lichtenberg & Thorup [Chan, Patrascu & Roditty 2008]
’1998]

Worst-Case 0(n1/?) O(m?/5), with query time O(m?/5)

[O(mY/2) by Frederickson ’1985] [Duan 2010]
[Improved by Eppstein, Galil,
Italiano, Nissenzweig ‘1992]

d-failure Model

» d-failure model:

» The number of “failed” vertices/edges is bounded by d

» It can be seen as a static structure, in which the query (u,v) is
given with a set D of “failed” vertices/edges and |D|= d

Next lecture

» Worst-case dynamic connectivity

