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In this talk 

 Concept of dynamic algorithms 

 Dynamic connectivity of O(log2n) amortized update time 

 Decremental minimum spanning tree 



Dynamic Problems 

 Find algorithms and data structures to answer a certain 

query about a set of input objects where each time the 

input data is modified. 

 



Dynamic Graph 

 Fully dynamic model: we can insert and delete edges to 

the graph G 

 Decremental model: only deletions 

 Incremental model: only insertions 

 



About dynamic algorithms 

 Measures of complexity: 

 Memory space to store the required data structures 

 Initial construction time for the data structure 

 Insertion/deletion time: time required to modify the data 

structure 

 Update time 

 Query time: time needed to answer an query 

 



Amortized analysis 

 For a sequence of updates, count the average time 

needed per each update. 

 Some updates may require much longer time 

 Only happen infrequently 



Connectivity Problem 

 In an undirected graph G, judge whether any two vertices 

are connected by a path. 



Dynamic Connectivity 

 We can insert or delete edges in this graph, and still find 

the connectivity of any pair of vertices. 



Dynamic Connectivity 

 We can insert or delete edges in this graph, and still find 

the connectivity of any pair of vertices. 



Connectivity and spanning forest 

 Spanning forest F: there is a spanning tree in each 

connected component 

 Connectivity: check whether u,v are in the same spanning 

tree of F. 



Dynamic Connectivity 

 Maintain the spanning forest dynamically 

 Inserting (u,v): 

 When u,v are in the same tree, F do not change 

 When u,v are not in the same tree, connect these trees to a 

bigger tree 



Dynamic Connectivity 

 Maintain the spanning forest dynamically 

 Deleting a tree edge (u,v): 

 The tree will be split into two parts 

 We need to find other edges reconnecting these two parts 
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Dynamic Connectivity 

 Maintain the spanning forest dynamically 

 Deleting a tree edge (u,v): 

 The tree will be split into two parts 

 We need to find other edges reconnecting these two parts 



Holm, Lichtenberg & Thorup’s structure 

 O(log2n) amortized update time  

 Best amortized update time so far. 

 Appears in STOC’98 



High-level description 

 Each edge e is assigned a level l(e). (0≤l(e)≤lmax) 

 Ei={edges of level ≥ i} 

 So E=E0⊇E1⊇…⊇Elmax 

Level 2 

Level 1 

Level 0 

E0 

E1 

E2 



High-level description 

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi 

 if e is a tree edge in Fi, it must be a tree edge in Fj (j<i) 

 Also, the number of vertices of a tree in Fi is at most n/2i 

 

 

 These properties are maintained throughout the 

algorithm. 



High-level description 

 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi 

 if e is a tree edge in Fi, it must be tree edge in Fj (j<i) 

 Also, the number of vertices of a tree in Fi is at most n/2i 

 The sizes of connected components decrease by a half when 

level increases 

 So lmax=O(log n) 

 These properties are maintained throughout the 

algorithm. 



Example 

 



Example – tree edge 

 level ≥2 

 level 1 

 level 0 



Remind 

 Inserting (u,v): 

 When u,v are in the same tree, F do not change 

 When u,v are not in the same tree, connect these trees to a 

bigger tree 

 Deleting a tree edge (u,v): 

 The tree will be split into two parts 

 We need to find other edges reconnecting these two parts 

 

 



Algorithm 

 Initially the graph is empty 

 Level of an edge only increases, never decreases 

 When we have checked the edge, its level increases 

 Only increases for lmax=O(log n) times 

 So the amortized time for an edge is very small.  



Algorithm 

 Insert(e): 

  l(e)=0, if its two ends are not connected in F0, e is added to F0 

 Delete(e): 

 If e is not a tree edge at level l(e), simply delete e 

 If e is a tree edge, delete it in F0, F1,…,Fl(e),  

 and call Reconnect(e, l(e)) 

 

 



Algorithm 

 Insert(e): 

  l(e)=0, if its two ends are not connected in F0, e is added to F0 

 Delete(e): 

 If e is not a tree edge at level l(e), simply delete e 

 If e is a tree edge, delete it in F0, F1,…,Fl(e),  

 and call Reconnect(e, l(e)) 

 

 Spanning forests F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

So when e is not a tree edge at its level l(e), 

it can not be a tree edge at other levels. 



Algorithm 

 Reconnect((u,v),i) – reconnect trees containing u and v by 

edges of level i 

 T– original tree in Fi containing (u,v),  

 T(u),T(v)– trees in Fi containing u,v after deletion of (u,v) 

 One of T(u),T(v) has at most a half as many vertices as T, 

assume it is T(u), move T(u) to level i+1 

 Check level i edges f incident to T(u) one by one, either: 

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 If no such edges are found, call Reconnect((u,v),i-1) 

 If i=0, we conclude that there is no reconnecting edges. 

 

 



Algorithm 

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 (since |T(u)|≤½|T|) 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 

 



 

Algorithm 

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 

 



Algorithm 

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 

 



Bound the reconnecting time 

 In one update we may need to check all the edges associated 

with a subtree T(u) 

 But after checking an edge, its level increases, so every edge 

can be checked O(log n) times 

 If initially the graph is empty, the number of edges is at most 

the number of update, so we need to check O(log n) edges 

per update. 



 We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

 if e=(u,v) is a non-tree edge in Ei, u and v are connected in Fi 

 if e is a tree edge in Fi, it must be tree edge in Fj (j<i) 

 Also, the number of vertices of a tree in Fi is at most n/2i 

 

 

 These properties hold after the update algorithm 



Example 

 F0, F1, F2: (non-tree edges are shown only in their levels) 

 



Example 

 Deleting a tree edge: 



Example 

 Call Reconnect(e,l(e)) 



Example 

 Check for an edge whether it can reconnect them 



Example 

 Remove it to higher level 



Example 

 Call reconnect in lower level 



Implementation 

 We need to keep dynamic forest 

 Merge two tree by an edge 

 Split a tree into two subtrees 

 Find the tree containing a given vertex 

 Return the size of a tree 

 Min-key: returns the minimal key in a tree 

 

 These operations can all be done in O(log n) time. 



ET-trees 

 Euler Tour of T: 

 

 

 

 

 

 Every vertex can appear many times in the Euler Tour, but 

we only keep any one of them for each vertex to form a 

ET-list： 

 v1，v2，… vn 

 



When we delete a tree edge, the ET-list will be 

divided into ≤3 parts, and we need to merge two 

lists.  

v1，v2，v3，v4，v5，v6，v7，v8，v9，v10，v11 

 

(v1，v2，v3，v4，v5，v10，v11);  (v6，v7，v8，v9) 

 



When we connect two trees by an edge, we need 

to split the ET-lists of the two trees from the 

vertices on that edge …  

(v1，v2，v3，v4，v5),  (v6，v7) 
 

(u1),  (u2，u3，u4) 

 



When we connect two trees by an edge, we need 

to split the ET-lists of the two trees from the 

vertices on that edge, and merge them in the 

right order.  

(v1，v2，v3，v4，v5),  (v6，v7); (u1),  (u2，u3，u4) 
 

(v1，v2，v3，v4，v5，u2，u3，u4，u1，v6，v7) 

 



Euler Tour 

 Euler Tour of T: 

 

 

 

 

 

 So we only need O(1) link & cut operations to maintain the 

ET-lists per tree merging or splitting. 

 However, we need balanced binary trees to keep the ET-lists, 

so it takes O(log n) time to rebalancing after a update, 



Self-balancing binary search tree 

 Automatically keep its height O(log n) 



Self-balancing binary search tree 

 Need O(log n) time to rebalancing 

 O(log n) time to find the root from a vertex 

 Every vertex can store the size or min-key of its subtree, 

so these information can be maintained in O(log n) time 

per update. 



ET-tree 

 We need to keep dynamic forest 

 Merge two tree by an edge 

 Split a tree into two subtrees 

 Find the tree containing a given vertex 

 Return the size of a tree 

 Min-key: returns the minimal key in a tree 

 

 These operations can all be done in O(log n) time. 



Back to dynamic connectivity 

 If initially the graph is empty, the number of edges is at 

most the number of update, so we need to check O(log n) 

edges per update. 

 Since merging two trees takes O(log n) time, and an edge 

can merge trees in O(log n) levels, so the amortized 

update time is O(log2n) 



Back to dynamic connectivity 

 If initially the graph is empty, the number of edges is at 

most the number of update, so we need to check O(log n) 

edges per update. 

 Since merging two trees takes O(log n) time, and an edge 

can merge trees in O(log n) levels, so the amortized 

update time is O(log2n). 

 Deletion can cost O(log2n) time. 

 Delete an edge in lmax trees 

 

 Query time: O(log n/loglog n) 

 Space: O(m+nlog n) (almost linear) 



Dynamic Minimum Spanning Tree 

 Much more complicated since we need to consider the 

order of edges 

 Decremental minimum spanning tree 

 Only a modification from dynamic connectivity structure 

 Only support deletions 



Algorithm 

 Originally we have a MST F0 at level 0 

 Delete(e): 

 If e is not a tree edge at level l(e), simply delete e 

 If e is a tree edge, delete it in F0, F1,…,Fl(e),  

 and call Reconnect(e, l(e)) 

 

 

Spanning forests F=F0⊇F1⊇…⊇Flmax on 

E0,E1,…,Elmax  

So when e is not a tree edge at level l(e), it 

can not be a tree edge at other levels. 



Algorithm 

 Reconnect((u,v),i) – reconnect trees containing u and v by 

edges of level i 

 T– original tree containing (u,v),  

 T(u),T(v)– trees containing u,v after deletion of (u,v) 

 One of T(u),T(v) has at most a half as many vertices as T, 

assume it is T(u), move T(u) to level i+1 

 Check level i edges f incident to T(u) in increasing order,  

 f does not connect T(u) and T(v), then it must be included in T(u), 

increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 If no such edges are found, call Reconnect((u,v),i-1) 

 If i=0, we conclude that there is no reconnecting edges. 

 

 



Algorithm 

 Reconnect((u,v),i) – reconnect trees containing u and v by 
edges of level i 

 T– original tree containing (u,v),  

 T(u),T(v)– trees containing u,v after deletion of (u,v) 

 One of T(u),T(v) has at most a half as many vertices as T, 
assume it is T(u), move T(u) to level i+1 

 Check level i edges f incident to T(u) in increasing order,  

 f does not connect T(u) and T(v), then it must be included in T(u), 
increase its level to i+1 

 f connect T(u) and T(v), stop the search, and add f to F0, F1,…,Fi 

 If no such edges are found, call Reconnect((u,v),i-1) 

 If i=0, we conclude that there is no reconnecting edges. 

 

 Intuitively, we can see we find the minimum edge which reconnects the 
two subtrees. 

 

 



Example 

 



 

Example 



Example 

 



Invariants 

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax 

on E0,E1,…,Elmax  

2. The number of vertices of a tree in Fi is at most n/2i 

3. Every cycle C has a non-tree edge e with: 
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Proof of correctness 

 Assume (3), the lightest replacement edge is on the 

maximum level 

 

 

 

 The algorithm maintains (3) 
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 e1, e2 can form cycles C1, C2 with the original tree 
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 Assume (3), the lightest replacement edge is on the 

maximum level 

 Compare two replacement edges e1, e2, if w(e1)<w(e2), we 

need to prove l(e1)≥l(e2) 

 e1, e2 can form cycles C1, C2 with the original tree 

 e1, e2 must be largest edges in C1, C2, resp. Otherwise original tree is 

not minimum  

 C=C1⊕C2 is also a cycle with e1 and e2,  and w(e2) is the 

largest in C,  so l(e2) is lowest. 

(3) Every cycle C has a non-tree edge e with largest weight and lowest level 



Proof of correctness 

 The algorithm maintains (3): 

 

 When the level of e increases, e is in T(u)  

 Assume e is the unique lowest largest edge on some cycle C 

 

 All other edges of C incident to T(u) have level >l(e) 

 C cannot leave T(u) 

 So all other edges in C have level >l(e), so (3) is maintained when l(e) 

increases by 1 

 

(3) Every cycle C has a non-tree edge e with largest weight and lowest level 



Proof of correctness 

 The algorithm maintains (3): 

 

 When the level of e increases, e is in T(u)  

 Assume e is the unique lowest largest edge on some cycle C 

 

 All other edge of C incident to T(u) have level >l(e) 

 C cannot leave T(u) (Otherwise there will be a replacement found.) 

 So all other edges in C have level >l(e), so (3) is maintained when l(e) 

increases by 1 

 

(3) Every cycle C has a non-tree edge e with largest weight and lowest level 



Update time 

 Only need to maintain min-key in ET-tree structure 

 

 Update time for this decremental MST is still O(log2n) 



Discussion 

 Why is it hard to extend this to fully dynamic MST? 

 Unlike connectivity structures, we may need to change the 

forest when inserting an edge. 

 Totally breaking the order of the structure 



Invariants 

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax  

2. The number of vertices of a tree in Fi is at most n/2i 

3. Every cycle C has a non-tree edge e with: 

 

 

 

 If we insert an edge with very small weight: 



w(e) max fC w( f )

l(e) max fC l( f )
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 The MST will change, so as MST in higher 

 levels 
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Invariants 

1. We keep the set of spanning forest F=F0⊇F1⊇…⊇Flmax on E0,E1,…,Elmax  

2. The number of vertices of a tree in Fi is at most n/2i 

3. Every cycle C has a non-tree edge e with: 

 

 

 

 If we insert an edge with very small weight: 

 The MST will change, so as MST in higher 

 levels 

 Level decreasing will destroy the hierarchy 



w(e) max fC w( f )

l(e) max fC l( f )

Too large for this 

level if we add the 

new edge here. 

Originally this edge at level 

2, but we need to decrease 

this level after update 



Fully dynamic MST 

 An O(log4n) amortized update time structure is given in: 

 “Poly-logarithmic deterministic fully-dynamic algorithms for 

connectivity, minimum spanning tree, 2-edge, and biconnectivity” 

 By Holm, Lichtenberg, Thorup, Jounral of ACM 2001 

 

 Construct smaller decremental structure every time 

 Complicated analysis 



Overview of Dynamic Connectivity Results 

 Edge update—amortized time 

 Holm, Lichtenberg, and Thorup: O(log2n) 

 

 Edge update—worst-case 

 Frederickson, Eppstein et al: O(n1/2) 

 

 

 

 



Dynamic Subgraph Model 

 There is a fixed underlying graph G, every vertex in G is 

in one of the two states “on” and “off”.  

 Construct a dynamic data structure: 

 Update: Switch a vertex “on” or “off”. 

 Query: For a pair (u,v), answer connectivity/shortest path 

between u and v in the subgraph of G induced by the “on” 

vertices. 

 



Dynamic Connectivity 

Edge Updates Vertex Updates (Subgraph) 

Amortized O(log2n) 
[Holm, Lichtenberg & Thorup 
’1998] 

Õ(m2/3), with query time Õ(m1/3) 
[Chan, Pâtraşcu & Roditty ‘2008] 

Worst-Case O(n1/2) 
[O(m1/2) by Frederickson ’1985] 
[Improved by Eppstein, Galil, 
Italiano, Nissenzweig ‘1992] 

Õ(m4/5), with query time Õ(m1/5) 
[Duan 2010] 



d-failure Model 

 d-failure model: 

 The number of “failed” vertices/edges is bounded by d 

 It can be seen as a static structure, in which the query (u,v) is 

given with a set D of “failed” vertices/edges and |D|≤ d 

 



Next lecture 

 Worst-case dynamic connectivity 


