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In this lecture 

 Worst-case dynamic connectivity in Õ(m1/2) 

 Improves to Õ(n1/2) by sparsification 

 Subgraph connectivity in amortized Õ(m2/3) update time 

 

 Õ() hides poly-logarithmic factors 

 For example, Õ(n2) means O(n2
logkn) for some constant k. 



About dynamic algorithms 

 Measures of complexity: 

 Memory space to store the required data structures 

 Initial construction time for the data structure 

 Insertion/deletion time: time required to modify the data 

structure 

 Update time 

 Query time: time needed to answer an query 

 



Overview of Dynamic Connectivity Results 

 Edge update—amortized time 

 Holm, Lichtenberg, and Thorup ‘1998: O(log2n) 

 

 Edge update—worst-case 

 Frederickson ‘1983: Õ(m1/2) 

 Eppstein, Galil, Italiano, Nissenzweig ‘1992: Õ(n1/2) 

 

 Not improved for 20 years, still a large gap to the amortized bound 

 Major challenge in dynamic algorithms 

 

 

 



Overview of Frederickson’s algorithm 

 Make G degree-bounded 

 Partition T into components with O(z) vertices 

 Maintain the set of edges between every pair of 

components 

 



Degree-bounded 

 Make the degree of every vertex no greater than 3 

 By adding O(m) vertices 

 Now |V|,|E| are both O(m) 



Degree-bounded 

 Make the degree of every vertex no greater than 3 

 By adding O(m) vertices 

 Updating an edge in original graph only affects O(1) 

vertices and edges. 



Partition of the spanning tree 

 For a spanning tree T, find an edge set E’ whose removal 

from T leaves subtrees with [z,3z-2] vertices. 

 So the number of such subtrees is O(m/z) 

 



Algorithm for partition 

 O(m) time algorithm: 

 Starting from any leaf vertex r, call it the “root” 

 Run the depth-first search: 

Search(v) 

 clust={v} 

 for each child w of v do 

  clust:=clust∪Search(w) 

 endfor 

 if |clust|<z then return(clust) 

    else output(clust); return(Ø) 

 endif  
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Algorithm for partition 

 O(m) time algorithm: 

 Starting from any leaf vertex r, call it the “root” 

 Run the depth-first search: 

 

 

 

 

 

 

 If the procedure Search(r) finally return 

a non-empty set of size <z, union it with 

the last output set. 

Search(v) 

 clust={v} 

 for each child w of v do 

  clust:=clust∪Search(w) 

 endfor 

 if |clust|<z then return(clust) 

    else output(clust); return(Ø) 

 endif  



Correctness 

 Since we start from a leaf, and the graph has degree bound 3, every 

vertex has at most 2 children 

 The function Search(v) will always return a set of size ≤z-1 

 So the output set has at most 2(z-1)+1=2z-1 vertices 

 

 

Search(v) 

 clust={v} 

 for each child w of v do 

  clust:=clust∪Search(w) 

 endfor 

 if |clust|<z then return(clust) 

    else output(clust); return(Ø) 

 endif  



Correctness 

 Since we start from a leaf, and the graph has degree bound 3, every 

vertex has at most 2 children 

 The function Search will always return a set of size ≤z-1 

 So the output set has at most 2(z-1)+1=2z-1 and at least z vertices 

 

 If the procedure Search(r) finally return a non-empty set of size <z, union it 

with the last output set. 

 The bound of this set is (z-1)+(2z-1)=3z-2 

Search(v) 

 clust={v} 

 for each child w of v do 

  clust:=clust∪Search(w) 

 endfor 

 if |clust|<z then return(clust) 

    else output(clust); return(Ø) 

 endif  



Partition of the spanning tree 

 Thus for a spanning tree T, in O(m) time, we can find an edge 

set E’ whose removal from T leaves vertex sets of size [z,3z-2]  

 So the number of such subtrees is O(m/z) 

 Topological partition of order z 

 

 Let Eij be the set of non-tree edges connecting sets Vi and Vj 

 The number of such edge sets is O(m2/z2) 

   

 

 



E ijjU O(z)



Update 

 Insertion is trivial 

 When deleting a tree edge e=(x,y) 

 If x,y are not in the same set, then we need to check all the edge set Eij 

where Vi and Vj are in different subtrees 



Update 

 When deleting a tree edge e=(x,y) 

 If x,y are not in the same set, then we need to check all the edge set Eij 

where Vi and Vj are in different subtrees 

 The number of such Eij is O(m2/z2) 



Update 

 When deleting a tree edge e=(x,y) 

 If x,y are in the same set Vi, then Vi will be divided into two parts 

 Then we need to check all edges in Eii and check Eij for every Vj 

 



Update 

 When deleting a tree edge e=(x,y) 

 If x,y are in the same set Vi, then Vi will be divided into two parts 

 Then we need to check all edges in Eii and check Eij for every Vj 

 



Update 

 When deleting a tree edge e=(x,y) 

 If x,y are in the same set Vi, then Vi will be divided into two parts 

 Then we need to check all edges in Eii and check Eij for every Vj, and 

also other edge sets connecting two subtrees 

 Time needed: O(z+m2/z2) 

 



Deleting an edge inside one component 

 We can see the two sets V’ and V’’ split from Vi may have <z 

vertices. 

 Rearrange: Combine each of them with one adjacent vertex 

set and perform the topological partition.  

 



Deleting an edge inside one component 

 We can see the two sets V’ and V’’ split from Vi may have <z 

vertices. 

 Rearrange: Combine each of them with one adjacent vertex 

set and perform the topological partition.  

 The bound for the combined set: ≤4z-3 



Deleting an edge inside one component 

 We can see the two sets V’ and V’’ split from Vi may have <z 

vertices. 

 Rearrange: Combine each of them with one adjacent vertex 

set and perform the topological partition.  

 The bound for the combined set: ≤4z-3 



Deleting an edge inside one component 

 We can see the two sets V’ and V’’ split from Vi may have <z 

vertices. 

 Rearrange: Combine each of them with one adjacent vertex 

set and perform the topological partition.  

 The bound for the combined set: ≤4z-3 

 Also rearrange all the edge 

sets associated with these vertex 

sets 

 Since the graph has degree 

bound 3, the number of such edges 

is still O(z) 

 Time needed: O(z) 



Running time 

 O(z+m2/z2) to find a replacement edge 

 O(z) to rearrange so that each set still has [z,3z-

2]vertices 

 

 When balancing these two, we get z=m2/3, and the running 

time is O(m2/3). 



Improving it to O(m1/2log n) 

 In the previous algorithm we need to check every pair of 

vertex sets between two split trees. 

 We can store all the edges from a vertex set to the other 

sets in the tree in one structure 

 Use the ET-tree structure 

 In Frederickson’s old paper (1983), they describe another 

structure called “topology trees” with similar functions. 



ET-tree 

 We need to keep dynamic forest 

 Merge two tree by an edge 

 Split a tree into two subtrees 

 Find the tree containing a given vertex 

 Return the size of a tree 

 Min-key: returns the minimal key in a tree 

 

 These operations can all be done in O(log n) time. 



ET-trees 

 Euler Tour of T: 

 

 

 

 

 

 Every vertex can appear many times in the Euler Tour, but 

we only keep any one of them for each vertex to form a 

ET-list： 

 v1，v2，… vn 

 



Euler Tour 

 Euler Tour of T: 

 

 

 

 

 

 So we only need O(1) link & cut operations to maintain the 

ET-lists per tree merging or splitting. 

 We need balanced binary trees to keep the ET-lists. 



ET-tree structure 

 Euler Tour of a tree  Binary tree for the ET-list 



ET-tree structure 

 Euler Tour of a tree 

 If some edges are connected to 

a component 

 Binary tree for the ET-list 

 Then we can easily check 

whether there is an edge from 

this tree to that component 



Updating ET-tree structure 

 Euler Tour of a tree 

 When we update an edge 

 Binary tree for the ET-list 

 We just need to update  

O(log n) nodes in the binary tree 



Represent tree of components 

 Components on vertex sets  Tree of components 



Store Eij for all Vj in the tree 

 Components on vertex sets  Tree of components 



Store Eij for all Vj in the tree 

 Components on vertex sets 

 

 

 

 

 

 

 

 

 

 We call this structure H(Vi, T) 

 Binary tree used to 

represent edges connecting 

V3 to other sets 



Euler Tour 

 We only need O(1) link & cut operations to maintain the ET-

lists per tree merging or splitting. 

 It takes O(log n) time to rebalancing the binary tree after a 

update, 

 So when we merging or splitting trees, the time needed to 

maintain H(Vi,T) for a set Vi is O(log n). 

 Total time: O(klog n) for all V1,…,Vk 



Update 

 When deleting a tree edge e=(x,y) 

 If x,y are not in the same set, then first we split the tree into two parts 

 This will need O(1) links and cuts to ET-lists,  

 So O(m/zlog n) operations to update H(Vi, T1) and H(Vi, T2) for all sets Vi 

 Then we need to check all structure H(Vi, T1) for Vi in T2 or H(Vi, T2) for 

Vi in T1 

 The number of such H-structures is O(m/z) 



Deleting an edge inside one component 

 Then we need to check all edges in Eii and Eij for every Vj, and also other H-

structures connecting two subtrees 

 We can see the two sets V’ and V’’ split from Vi may have <z vertices. 

 Rearrange: Combine each of them with one adjacent vertex set and 

perform the topological partition.  

 

 When rearranging a non-tree edge 

from Vi to Vj, we need to update 

O(log n) nodes in H(Vi,T), H(Vj,T) 

 

 Total time: O(m/zlog n+zlog n) 

 



Running time 

 O(z+m/zlog n) to find a replacement edge 

 O(zlog n) to rearrange and update H-structures 

 

 When balancing these two, we get z=m1/2, and the running 

time is Õ(m1/2). 



Dynamic minimum spanning tree 

 This Õ(m1/2) structure can be easily extended to dynamic 

minimum spanning tree structure: 

 Sort all the edges in every Eij 

 Maintain the min-key in every H(Vi,T) 

 … 



Improve Frederickson’s algorithm to Õ(n1/2)  

 Sparsification: 

 “Sparsification – A technique for speeding up dynamic graph 

algorithms” 

 By Eppstein, Galil, Italiano, Nissenzweig, Journal of ACM 1997 

 

 



Improve Frederickson’s algorithm to Õ(n1/2)  

 Sparsification: 

 “Sparsification – A technique for speeding up dynamic graph 

algorithms” 

 By Eppstein, Galil, Italiano, Nissenzweig, Journal of ACM 1997 

 

 

 They divide the edge set E into subsets {Ei} 

 Maintain spanning trees Ti on {Ei} 

 Maintain spanning trees on the union of some Ti 



Partition of E 

 Partition E into sets of n edges: 

 {E1,E2,…Ek}, where k≤⌈m/n⌉, and |Ei|=n for i=1,…,k-1 

 

 When inserting an edge e,  

 Insert e to Ek if |Ek|<n 

 Otherwise create a new set Ek+1 

 

 When deleting an edge from Ei 

 Move one edge of Ek to Ei 

 If Ek becomes empty, remove Ek 

 



Partition of E 

 Assume a dynamic connectivity structure of update time f(n,m) 

 Maintain spanning forests Fi in Gi=(V, Ei)   
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Partition of E 

 Assume a dynamic connectivity structure of update time f(n,m) 

 Maintain spanning forests Fi in Gi=(V, Ei)  

 In the graph G12=(V,F1∪F2) , maintain a spanning forest 

 G12 also has O(n) edges 

 It maintains the connectivity of (V, E1∪E2) 

 



Proof of correctness 

 F is a strong certificate of connectivity for G: 

 If F1, F2 are spanning forests on G1, G2, then u,v are connected 

in F1∪F2 if they are connected in G1∪G2. 

 



Proof of correctness 

 F is a strong certificate of connectivity for G: 

 If F1, F2 are spanning forests on G1, G2, then u,v are connected 

in F1∪F2 if they are connected in G1∪G2. 

 

 Proof: Consider the path from u to v in G1∪G2: 

 edges of G1 

 edges of G2 



Proof of correctness 

 F is a strong certificate of connectivity for G: 

 If F1, F2 are spanning forests on G1, G2, then u,v are connected 

in F1∪F2 if they are connected in G1∪G2. 

 

 Proof: Consider the path from u to v in G1∪G2: 

 edges of G1, edges of G2 

 (dash lines: edges in F1 and F2) 

connected in F1 connected in F2 



Proof of correctness 

 F is a strong certificate of connectivity for G: 

 If F1, F2 are spanning forests on G1, G2, then u,v are connected 

in F1∪F2 if they are connected in G1∪G2. 

 

 F is stable: 

 We only need to update O(1) edges in F when updating an 

edge of G 

 



Maintain the structure on a binary tree 

 Each node represents a subgraph of G 

 The edges of each node is the union of the spanning forests of 

its children. 

 The number of levels: O(log k)=O(log(m/n)) 

 The number of edges in each node: O(n) 

 Finally we can check the connectivity in the root node 



Maintain the structure on a binary tree 

 When updating an edge in Gi, we only need to update at most 

2 edges in Gi’s ancestors. 

 Since the number of levels is O(log k)=O(log(m/n)) and  the number of 

edges in each node is O(n) 

 Update time is f(n,O(n))O(log(m/n)) using a structure with f(n,m) 

update time. 

 



Maintain the structure on a binary tree 

 When updating an edge in Gi, we only need to update at most 

2 edges in Gi’s ancestors. 

 Since the number of levels is O(log k)=O(log(m/n)) and  the number of 

edges in each node is O(n) 

 Update time is f(n,O(n))O(log(m/n)) using a structure with f(n,m) 

update time 

 By the Frederickson’s structure of update time Õ(m1/2),  

 We get a dynamic connectivity structure of update time Õ(n1/2). 

 



Summary of Dynamic Connectivity Results 

 Edge update—amortized time 

 Holm, Lichtenberg, and Thorup: O(log2n) 

 

 Edge update—worst-case 

 Frederickson, Eppstein et al: Õ(n1/2) 

 

 

 

 



Dynamic Subgraph Model 

 There is a fixed underlying graph G, every vertex in G is 

in one of the two states “on” and “off”.  

 Construct a dynamic data structure: 

 Update: Switch a vertex “on” or “off”. 

 Query: For a pair (u,v), answer connectivity/shortest path 

between u and v in the subgraph of G induced by the “on” 

vertices. 

 



Dynamic Connectivity 

Edge Updates Vertex Updates (Subgraph) 

Amortized O(log2n) 
[Holm, Lichtenberg & Thorup 
’1998] 

Õ(m2/3), with query time Õ(m1/3) 
[Chan, Pâtraşcu & Roditty ‘2008] 

Worst-Case O(n1/2) 
[O(m1/2) by Frederickson ’1985] 
[Improved by Eppstein, Galil, 
Italiano, Nissenzweig ‘1992] 

Õ(m4/5), with query time Õ(m1/5) 
[Duan 2010] 



Dynamic Subgraph Connectivity (Optional) 

 Dynamic subgraph connectivity with Õ(m2/3) amortized pdate 
time and Õ(m1/3) query time. 

 “Dynamic Connectivity: Connecting to Networks and Geometry” 

 By Chan, Pâtraşcu & Roditty ‘2008 

 

 Do not maintain a spanning forest for the whole graph. 

 

 



Trivial Algorithm 

 Since a vertex can associate with at most n-1 edges, so by 

the edge connectivity structure, we can get a vertex 

connectivity structure of amortized update time Õ(n) and 

query time O(1). 



Preprocessing 

 Maintain two sets of active vertices: P,Q 

 Initially all active vertices are in P 

 We only delete vertices from P 

 When we turn a vertex on, we add it into Q 

 Thus, 

 P just supports deletions (decremental structure) 

 Q supports both insertions and deletions 

 



Preprocessing 

 Maintain two sets of active vertices: P,Q 

 Initially all active vertices are in P 

 We only delete vertices from P 

 When we turn a vertex on, we add it into Q 

 Thus, 

 P just supports deletions (decremental structure) 

 Q supports both insertions and deletions 

 

• Reinitialize after q=m2/3 updates. 

• So the size of Q is at most m2/3. 

 

 



High and low components 

 Maintain the decremental connectivity structure with 

edge updates in P. 

 For a connected component in P, if the sum of its degrees 

exceeds m1/3, it is called a high component, otherwise it is 

a low component.  

 The number of high components is bounded by O(m2/3). 



Maintain a new graph 

 Maintain a graph G* of vertices O(m2/3): 

 Vertices of Q 

 Vertices set H where each vertex represents a high 

component in P 

 And the original edges in G connecting those vertices and 

components. 



Example 

The sets P and Q: The graph G* 

Note that there is no edges 

connecting these components 



 But what if two vertices of Q can be connected by a low 

component? 



The Edge Set Γ 

 We construct a edge set Γ on the vertices in G 

 If both u and v are adjacent to the same low component 

in P, then there is an edge (u,v) in Γ. 

 There can be multiple edges between u and v. 



Example 



The size of Γ  

 For every edge connecting a low component and a 

vertex, since the number of edges associate with that 

low component is at most m1/3, so the number of 

edges in Γ generated by this edge is at most m1/3. 

 So the total number of edges in Γ is at most m4/3. 



Maintain a new graph 

 Maintain a graph G* of vertices O(m2/3): 

 Vertices of Q 

 Vertices set H where each vertex represents a high 

component in P 

 And the original edges in G connecting those vertices and 

components. 

 Include the edges of Γ into G* 

 

 It is easy to check that for every pair of active vertices in 

Q, they are connected in G iff they are connected in G* 

 



Example 

The sets P and Q: The graph G* 

Maintain G* in an edge 

connectivity oracle. 



Query 

 It takes O(log n) time to find a vertex in Q which component 

it is in. 

 For vertices in high components: 

 Find the vertex in G* which represents that component 

 For vertices in low components: 

 Search for an active vertex of Q adjacent to the component.  

 If it does not exist, the component is isolated. 

 Query time: Õ(m1/3), since the edges associated with a low component is 

O(m1/3). 



Preprocessing Time 

 Initializing G* and Γ takes Õ(m4/3) time. 

 Since we will reinitialize after m2/3 updates, so the 

amortized cost for every update is Õ(m2/3). 



Analysis of Updates 

 Initially all active vertices are in P, and Q is empty. 

 P -- deletion only 



Analysis of Updates 

 When update (insert/delete) a vertex v from Q 

 Update G*: check for every vertex in G* whether it is adjacent 

to v, update those edges 

 Time: Õ(m2/3). 



Analysis of Updates 

 When deleting a vertex of a low component in P: 

 Recompute the edges in Γ generated by it. 

 Update those edges in G* 



Analysis of Updates 

 When deleting a vertex of a low component in P: 

 Recompute the edges in Γ generated by it. 

 Update those edges in G* 



Analysis of Updates 

 When deleting a vertex of a low component in P: 

 Recompute the edges in Γ generated by it. 

 Update those edges in G* 



Analysis of Updates 

 When deleting a vertex of a low component in P: 

 Since the number of edges associate with that low component 

is at most m1/3, we may need to update O(m2/3) edges in G*, 

thus will take Õ(m2/3) time. 



Analysis of Updates 

 When deleting a vertex of a high component in P: 

 The new components it generates may be high or low. 

 Rank the new components by the sum of degrees: R1,R2,…,Rk 

(from high to low). 

 Consider the new high components  



Example 

R 



Example 

Cost of deleting edges in P: 

In total of one phase is Õ(m), so it is 

Õ(m1/3) per updates. 

R2 

R1 

R3 



Example 

Cost of deleting edges in P: 

In total of one phase is Õ(m), so it is 

Õ(m1/3) per updates. 

Time needed to update G*: 

O(deg(R2)+deg(R3)+…+deg(Rk)) 

Since deg(R2),deg(R3),…,deg(Rk) are 

at most half of deg(r), every edge can 

be moved at most logn times, so the 

total time per phase is still Õ(m). 

R2 

R1 

R3 



Analysis of Updates 

 For the new low components: 

 Compute the edges of Γ generated by them. 

 Since an edge can be in a new low component from a high 

component only once, so the total cost of time is also Õ(m4/3), 

absorbed by the preprocess cost. 



Conclusion 

 Preprocessing Time: Õ(m4/3). 

 Amortized Update Time: Õ(m2/3). 

 Query Time: Õ(m1/3) 

 Space: Õ(m4/3) (The space needed to store Γ). 



Conclusion 

 Preprocessing Time: Õ(m4/3). 

 Amortized Update Time: Õ(m2/3). 

 Query Time: Õ(m1/3) 

 Space: Õ(m4/3) (We have improved it to O(m)). 



Thank you! 


