
Dynamic Connectivity II

Ran Duan

In this lecture

 Worst-case dynamic connectivity in Õ(m1/2)

 Improves to Õ(n1/2) by sparsification

 Subgraph connectivity in amortized Õ(m2/3) update time

 Õ() hides poly-logarithmic factors

 For example, Õ(n2) means O(n2
logkn) for some constant k.

About dynamic algorithms

 Measures of complexity:

 Memory space to store the required data structures

 Initial construction time for the data structure

 Insertion/deletion time: time required to modify the data

structure

 Update time

 Query time: time needed to answer an query

Overview of Dynamic Connectivity Results

 Edge update—amortized time

 Holm, Lichtenberg, and Thorup ‘1998: O(log2n)

 Edge update—worst-case

 Frederickson ‘1983: Õ(m1/2)

 Eppstein, Galil, Italiano, Nissenzweig ‘1992: Õ(n1/2)

 Not improved for 20 years, still a large gap to the amortized bound

 Major challenge in dynamic algorithms

Overview of Frederickson’s algorithm

 Make G degree-bounded

 Partition T into components with O(z) vertices

 Maintain the set of edges between every pair of

components

Degree-bounded

 Make the degree of every vertex no greater than 3

 By adding O(m) vertices

 Now |V|,|E| are both O(m)

Degree-bounded

 Make the degree of every vertex no greater than 3

 By adding O(m) vertices

 Updating an edge in original graph only affects O(1)

vertices and edges.

Partition of the spanning tree

 For a spanning tree T, find an edge set E’ whose removal

from T leaves subtrees with [z,3z-2] vertices.

 So the number of such subtrees is O(m/z)

Algorithm for partition

 O(m) time algorithm:

 Starting from any leaf vertex r, call it the “root”

 Run the depth-first search:

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Algorithm for partition

 O(m) time algorithm:

 Starting from any leaf vertex r, call it the “root”

 Run the depth-first search:

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Algorithm for partition

 O(m) time algorithm:

 Starting from any leaf vertex r, call it the “root”

 Run the depth-first search:

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Algorithm for partition

 O(m) time algorithm:

 Starting from any leaf vertex r, call it the “root”

 Run the depth-first search:

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Algorithm for partition

 O(m) time algorithm:

 Starting from any leaf vertex r, call it the “root”

 Run the depth-first search:

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Algorithm for partition

 O(m) time algorithm:

 Starting from any leaf vertex r, call it the “root”

 Run the depth-first search:

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Algorithm for partition

 O(m) time algorithm:

 Starting from any leaf vertex r, call it the “root”

 Run the depth-first search:

 If the procedure Search(r) finally return

a non-empty set of size <z, union it with

the last output set.

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Correctness

 Since we start from a leaf, and the graph has degree bound 3, every

vertex has at most 2 children

 The function Search(v) will always return a set of size ≤z-1

 So the output set has at most 2(z-1)+1=2z-1 vertices

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Correctness

 Since we start from a leaf, and the graph has degree bound 3, every

vertex has at most 2 children

 The function Search will always return a set of size ≤z-1

 So the output set has at most 2(z-1)+1=2z-1 and at least z vertices

 If the procedure Search(r) finally return a non-empty set of size <z, union it

with the last output set.

 The bound of this set is (z-1)+(2z-1)=3z-2

Search(v)

 clust={v}

 for each child w of v do

 clust:=clust∪Search(w)

 endfor

 if |clust|<z then return(clust)

 else output(clust); return(Ø)

 endif

Partition of the spanning tree

 Thus for a spanning tree T, in O(m) time, we can find an edge

set E’ whose removal from T leaves vertex sets of size [z,3z-2]

 So the number of such subtrees is O(m/z)

 Topological partition of order z

 Let Eij be the set of non-tree edges connecting sets Vi and Vj

 The number of such edge sets is O(m2/z2)

E ijjU O(z)

Update

 Insertion is trivial

 When deleting a tree edge e=(x,y)

 If x,y are not in the same set, then we need to check all the edge set Eij

where Vi and Vj are in different subtrees

Update

 When deleting a tree edge e=(x,y)

 If x,y are not in the same set, then we need to check all the edge set Eij

where Vi and Vj are in different subtrees

 The number of such Eij is O(m2/z2)

Update

 When deleting a tree edge e=(x,y)

 If x,y are in the same set Vi, then Vi will be divided into two parts

 Then we need to check all edges in Eii and check Eij for every Vj

Update

 When deleting a tree edge e=(x,y)

 If x,y are in the same set Vi, then Vi will be divided into two parts

 Then we need to check all edges in Eii and check Eij for every Vj

Update

 When deleting a tree edge e=(x,y)

 If x,y are in the same set Vi, then Vi will be divided into two parts

 Then we need to check all edges in Eii and check Eij for every Vj, and

also other edge sets connecting two subtrees

 Time needed: O(z+m2/z2)

Deleting an edge inside one component

 We can see the two sets V’ and V’’ split from Vi may have <z

vertices.

 Rearrange: Combine each of them with one adjacent vertex

set and perform the topological partition.

Deleting an edge inside one component

 We can see the two sets V’ and V’’ split from Vi may have <z

vertices.

 Rearrange: Combine each of them with one adjacent vertex

set and perform the topological partition.

 The bound for the combined set: ≤4z-3

Deleting an edge inside one component

 We can see the two sets V’ and V’’ split from Vi may have <z

vertices.

 Rearrange: Combine each of them with one adjacent vertex

set and perform the topological partition.

 The bound for the combined set: ≤4z-3

Deleting an edge inside one component

 We can see the two sets V’ and V’’ split from Vi may have <z

vertices.

 Rearrange: Combine each of them with one adjacent vertex

set and perform the topological partition.

 The bound for the combined set: ≤4z-3

 Also rearrange all the edge

sets associated with these vertex

sets

 Since the graph has degree

bound 3, the number of such edges

is still O(z)

 Time needed: O(z)

Running time

 O(z+m2/z2) to find a replacement edge

 O(z) to rearrange so that each set still has [z,3z-

2]vertices

 When balancing these two, we get z=m2/3, and the running

time is O(m2/3).

Improving it to O(m1/2log n)

 In the previous algorithm we need to check every pair of

vertex sets between two split trees.

 We can store all the edges from a vertex set to the other

sets in the tree in one structure

 Use the ET-tree structure

 In Frederickson’s old paper (1983), they describe another

structure called “topology trees” with similar functions.

ET-tree

 We need to keep dynamic forest

 Merge two tree by an edge

 Split a tree into two subtrees

 Find the tree containing a given vertex

 Return the size of a tree

 Min-key: returns the minimal key in a tree

 These operations can all be done in O(log n) time.

ET-trees

 Euler Tour of T:

 Every vertex can appear many times in the Euler Tour, but

we only keep any one of them for each vertex to form a

ET-list：

 v1，v2，… vn

Euler Tour

 Euler Tour of T:

 So we only need O(1) link & cut operations to maintain the

ET-lists per tree merging or splitting.

 We need balanced binary trees to keep the ET-lists.

ET-tree structure

 Euler Tour of a tree Binary tree for the ET-list

ET-tree structure

 Euler Tour of a tree

 If some edges are connected to

a component

 Binary tree for the ET-list

 Then we can easily check

whether there is an edge from

this tree to that component

Updating ET-tree structure

 Euler Tour of a tree

 When we update an edge

 Binary tree for the ET-list

 We just need to update

O(log n) nodes in the binary tree

Represent tree of components

 Components on vertex sets Tree of components

Store Eij for all Vj in the tree

 Components on vertex sets Tree of components

Store Eij for all Vj in the tree

 Components on vertex sets

 We call this structure H(Vi, T)

 Binary tree used to

represent edges connecting

V3 to other sets

Euler Tour

 We only need O(1) link & cut operations to maintain the ET-

lists per tree merging or splitting.

 It takes O(log n) time to rebalancing the binary tree after a

update,

 So when we merging or splitting trees, the time needed to

maintain H(Vi,T) for a set Vi is O(log n).

 Total time: O(klog n) for all V1,…,Vk

Update

 When deleting a tree edge e=(x,y)

 If x,y are not in the same set, then first we split the tree into two parts

 This will need O(1) links and cuts to ET-lists,

 So O(m/zlog n) operations to update H(Vi, T1) and H(Vi, T2) for all sets Vi

 Then we need to check all structure H(Vi, T1) for Vi in T2 or H(Vi, T2) for

Vi in T1

 The number of such H-structures is O(m/z)

Deleting an edge inside one component

 Then we need to check all edges in Eii and Eij for every Vj, and also other H-

structures connecting two subtrees

 We can see the two sets V’ and V’’ split from Vi may have <z vertices.

 Rearrange: Combine each of them with one adjacent vertex set and

perform the topological partition.

 When rearranging a non-tree edge

from Vi to Vj, we need to update

O(log n) nodes in H(Vi,T), H(Vj,T)

 Total time: O(m/zlog n+zlog n)

Running time

 O(z+m/zlog n) to find a replacement edge

 O(zlog n) to rearrange and update H-structures

 When balancing these two, we get z=m1/2, and the running

time is Õ(m1/2).

Dynamic minimum spanning tree

 This Õ(m1/2) structure can be easily extended to dynamic

minimum spanning tree structure:

 Sort all the edges in every Eij

 Maintain the min-key in every H(Vi,T)

 …

Improve Frederickson’s algorithm to Õ(n1/2)

 Sparsification:

 “Sparsification – A technique for speeding up dynamic graph

algorithms”

 By Eppstein, Galil, Italiano, Nissenzweig, Journal of ACM 1997

Improve Frederickson’s algorithm to Õ(n1/2)

 Sparsification:

 “Sparsification – A technique for speeding up dynamic graph

algorithms”

 By Eppstein, Galil, Italiano, Nissenzweig, Journal of ACM 1997

 They divide the edge set E into subsets {Ei}

 Maintain spanning trees Ti on {Ei}

 Maintain spanning trees on the union of some Ti

Partition of E

 Partition E into sets of n edges:

 {E1,E2,…Ek}, where k≤⌈m/n⌉, and |Ei|=n for i=1,…,k-1

 When inserting an edge e,

 Insert e to Ek if |Ek|<n

 Otherwise create a new set Ek+1

 When deleting an edge from Ei

 Move one edge of Ek to Ei

 If Ek becomes empty, remove Ek

Partition of E

 Assume a dynamic connectivity structure of update time f(n,m)

 Maintain spanning forests Fi in Gi=(V, Ei)

Partition of E

 Assume a dynamic connectivity structure of update time f(n,m)

 Maintain spanning forests Fi in Gi=(V, Ei)

Partition of E

 Assume a dynamic connectivity structure of update time f(n,m)

 Maintain spanning forests Fi in Gi=(V, Ei)

 In the graph G12=(V,F1∪F2) , maintain a spanning forest

 G12 also has O(n) edges

 It maintains the connectivity of (V, E1∪E2)

Proof of correctness

 F is a strong certificate of connectivity for G:

 If F1, F2 are spanning forests on G1, G2, then u,v are connected

in F1∪F2 if they are connected in G1∪G2.

Proof of correctness

 F is a strong certificate of connectivity for G:

 If F1, F2 are spanning forests on G1, G2, then u,v are connected

in F1∪F2 if they are connected in G1∪G2.

 Proof: Consider the path from u to v in G1∪G2:

 edges of G1

 edges of G2

Proof of correctness

 F is a strong certificate of connectivity for G:

 If F1, F2 are spanning forests on G1, G2, then u,v are connected

in F1∪F2 if they are connected in G1∪G2.

 Proof: Consider the path from u to v in G1∪G2:

 edges of G1, edges of G2

 (dash lines: edges in F1 and F2)

connected in F1 connected in F2

Proof of correctness

 F is a strong certificate of connectivity for G:

 If F1, F2 are spanning forests on G1, G2, then u,v are connected

in F1∪F2 if they are connected in G1∪G2.

 F is stable:

 We only need to update O(1) edges in F when updating an

edge of G

Maintain the structure on a binary tree

 Each node represents a subgraph of G

 The edges of each node is the union of the spanning forests of

its children.

 The number of levels: O(log k)=O(log(m/n))

 The number of edges in each node: O(n)

 Finally we can check the connectivity in the root node

Maintain the structure on a binary tree

 When updating an edge in Gi, we only need to update at most

2 edges in Gi’s ancestors.

 Since the number of levels is O(log k)=O(log(m/n)) and the number of

edges in each node is O(n)

 Update time is f(n,O(n))O(log(m/n)) using a structure with f(n,m)

update time.

Maintain the structure on a binary tree

 When updating an edge in Gi, we only need to update at most

2 edges in Gi’s ancestors.

 Since the number of levels is O(log k)=O(log(m/n)) and the number of

edges in each node is O(n)

 Update time is f(n,O(n))O(log(m/n)) using a structure with f(n,m)

update time

 By the Frederickson’s structure of update time Õ(m1/2),

 We get a dynamic connectivity structure of update time Õ(n1/2).

Summary of Dynamic Connectivity Results

 Edge update—amortized time

 Holm, Lichtenberg, and Thorup: O(log2n)

 Edge update—worst-case

 Frederickson, Eppstein et al: Õ(n1/2)

Dynamic Subgraph Model

 There is a fixed underlying graph G, every vertex in G is

in one of the two states “on” and “off”.

 Construct a dynamic data structure:

 Update: Switch a vertex “on” or “off”.

 Query: For a pair (u,v), answer connectivity/shortest path

between u and v in the subgraph of G induced by the “on”

vertices.

Dynamic Connectivity

Edge Updates Vertex Updates (Subgraph)

Amortized O(log2n)
[Holm, Lichtenberg & Thorup
’1998]

Õ(m2/3), with query time Õ(m1/3)
[Chan, Pâtraşcu & Roditty ‘2008]

Worst-Case O(n1/2)
[O(m1/2) by Frederickson ’1985]
[Improved by Eppstein, Galil,
Italiano, Nissenzweig ‘1992]

Õ(m4/5), with query time Õ(m1/5)
[Duan 2010]

Dynamic Subgraph Connectivity (Optional)

 Dynamic subgraph connectivity with Õ(m2/3) amortized pdate
time and Õ(m1/3) query time.

 “Dynamic Connectivity: Connecting to Networks and Geometry”

 By Chan, Pâtraşcu & Roditty ‘2008

 Do not maintain a spanning forest for the whole graph.

Trivial Algorithm

 Since a vertex can associate with at most n-1 edges, so by

the edge connectivity structure, we can get a vertex

connectivity structure of amortized update time Õ(n) and

query time O(1).

Preprocessing

 Maintain two sets of active vertices: P,Q

 Initially all active vertices are in P

 We only delete vertices from P

 When we turn a vertex on, we add it into Q

 Thus,

 P just supports deletions (decremental structure)

 Q supports both insertions and deletions

Preprocessing

 Maintain two sets of active vertices: P,Q

 Initially all active vertices are in P

 We only delete vertices from P

 When we turn a vertex on, we add it into Q

 Thus,

 P just supports deletions (decremental structure)

 Q supports both insertions and deletions

• Reinitialize after q=m2/3 updates.

• So the size of Q is at most m2/3.

High and low components

 Maintain the decremental connectivity structure with

edge updates in P.

 For a connected component in P, if the sum of its degrees

exceeds m1/3, it is called a high component, otherwise it is

a low component.

 The number of high components is bounded by O(m2/3).

Maintain a new graph

 Maintain a graph G* of vertices O(m2/3):

 Vertices of Q

 Vertices set H where each vertex represents a high

component in P

 And the original edges in G connecting those vertices and

components.

Example

The sets P and Q: The graph G*

Note that there is no edges

connecting these components

 But what if two vertices of Q can be connected by a low

component?

The Edge Set Γ

 We construct a edge set Γ on the vertices in G

 If both u and v are adjacent to the same low component

in P, then there is an edge (u,v) in Γ.

 There can be multiple edges between u and v.

Example

The size of Γ

 For every edge connecting a low component and a

vertex, since the number of edges associate with that

low component is at most m1/3, so the number of

edges in Γ generated by this edge is at most m1/3.

 So the total number of edges in Γ is at most m4/3.

Maintain a new graph

 Maintain a graph G* of vertices O(m2/3):

 Vertices of Q

 Vertices set H where each vertex represents a high

component in P

 And the original edges in G connecting those vertices and

components.

 Include the edges of Γ into G*

 It is easy to check that for every pair of active vertices in

Q, they are connected in G iff they are connected in G*

Example

The sets P and Q: The graph G*

Maintain G* in an edge

connectivity oracle.

Query

 It takes O(log n) time to find a vertex in Q which component

it is in.

 For vertices in high components:

 Find the vertex in G* which represents that component

 For vertices in low components:

 Search for an active vertex of Q adjacent to the component.

 If it does not exist, the component is isolated.

 Query time: Õ(m1/3), since the edges associated with a low component is

O(m1/3).

Preprocessing Time

 Initializing G* and Γ takes Õ(m4/3) time.

 Since we will reinitialize after m2/3 updates, so the

amortized cost for every update is Õ(m2/3).

Analysis of Updates

 Initially all active vertices are in P, and Q is empty.

 P -- deletion only

Analysis of Updates

 When update (insert/delete) a vertex v from Q

 Update G*: check for every vertex in G* whether it is adjacent

to v, update those edges

 Time: Õ(m2/3).

Analysis of Updates

 When deleting a vertex of a low component in P:

 Recompute the edges in Γ generated by it.

 Update those edges in G*

Analysis of Updates

 When deleting a vertex of a low component in P:

 Recompute the edges in Γ generated by it.

 Update those edges in G*

Analysis of Updates

 When deleting a vertex of a low component in P:

 Recompute the edges in Γ generated by it.

 Update those edges in G*

Analysis of Updates

 When deleting a vertex of a low component in P:

 Since the number of edges associate with that low component

is at most m1/3, we may need to update O(m2/3) edges in G*,

thus will take Õ(m2/3) time.

Analysis of Updates

 When deleting a vertex of a high component in P:

 The new components it generates may be high or low.

 Rank the new components by the sum of degrees: R1,R2,…,Rk

(from high to low).

 Consider the new high components

Example

R

Example

Cost of deleting edges in P:

In total of one phase is Õ(m), so it is

Õ(m1/3) per updates.

R2

R1

R3

Example

Cost of deleting edges in P:

In total of one phase is Õ(m), so it is

Õ(m1/3) per updates.

Time needed to update G*:

O(deg(R2)+deg(R3)+…+deg(Rk))

Since deg(R2),deg(R3),…,deg(Rk) are

at most half of deg(r), every edge can

be moved at most logn times, so the

total time per phase is still Õ(m).

R2

R1

R3

Analysis of Updates

 For the new low components:

 Compute the edges of Γ generated by them.

 Since an edge can be in a new low component from a high

component only once, so the total cost of time is also Õ(m4/3),

absorbed by the preprocess cost.

Conclusion

 Preprocessing Time: Õ(m4/3).

 Amortized Update Time: Õ(m2/3).

 Query Time: Õ(m1/3)

 Space: Õ(m4/3) (The space needed to store Γ).

Conclusion

 Preprocessing Time: Õ(m4/3).

 Amortized Update Time: Õ(m2/3).

 Query Time: Õ(m1/3)

 Space: Õ(m4/3) (We have improved it to O(m)).

Thank you!

