
ALL-PAIR SHORTEST PATH VIA

FAST MATRIX MULTIPLICATION
Ran Duan

ALL-PAIR SHORTEST PATH

 Run the Dijkstra’s algorithm from every vertex

 Running time: O(mn+n2log n)

 Floyd-Warshall algorithm

 Running time: O(n3)

FloydWarshall()

For k=1 to n do

 For i=1 to n do

For j=1 to n do

 d(i,j)=min{d(i,j), d(i,k)+d(k,j)}

ALL-PAIR SHORTEST PATH

 Run the Dijkstra’s algorithm from every vertex

 Running time: O(mn+n2log n)

 Floyd-Warshall algorithm

 Running time: O(n3)

 There is no truly sub-cubic algorithm for real-

weighted APSP

 Major open problem in graph theory

ALL-PAIRS SHORTEST PATHS
IN DIRECTED GRAPHS WITH “REAL” EDGE WEIGHTS

Running time Authors

n3 [Floyd ’62] [Warshall ’62]

n3 (log log n / log n)1/3 [Fredman ’76]

n3 (log log n / log n)1/2 [Takaoka ’92]

n3 / (log n)1/2 [Dobosiewicz ’90]

n3 (log log n / log n)5/7 [Han ’04]

n3 log log n / log n [Takaoka ’04]

n3 (log log n)1/2 / log n [Zwick ’04]

n3 / log n [Chan ’05]

n3 (log log n / log n)5/4 [Han ’06]

n3 (log log n)3 / (log n)2 [Chan ’07]

IN THIS TALK…

 We will use fast matrix multiplication algorithm

to get o(n3) all-pair shortest path for small

integer weights.

 The time for fast matrix multiplication is O(nω),

ω=2.373 at present

 Improved by V. Williams this year from the well-

known Coppersmith-Winograd bound of 2.376

 We still use 2.376 bound in this talk.

OUTLINE

 Algebraic matrix multiplication

 Transitive closure in O(nω) time

 APSP in undirected unweighted graphs in O(nω)

time.

 APSP in directed graphs

 Time: O(M0.68n2.58) for integer weighted [1..M] graphs

 Min-plus product for matrices

ALGEBRAIC MATRIX MULTIPLICATION

 = ()
i j

A a ()
i j

B b ()
i j

C ci

j

Can be computed naively in O(n3) time.

MATRIX MULTIPLICATION ALGORITHMS

Authors Complexity

— n3

Strassen (1969) n2.81

Coppersmith, Winograd (1990) n2.38

Conjecture/Open problem: n2+o(1) ???

MULTIPLYING 22 MATRICES

8 multiplications

4 additions

T(n) = 8 T(n/2) + O(n2)

T(n) = O(nlog8/log2)=O(n3)

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

STRASSEN’S 22 ALGORITHM

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B

C A B A B

C A B A B

C A B A B

 

 

 

 

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

()()

()

()

()

()

()()

()()

M A A B B

M A A B

M A B B

M A B B

M A A B

M A A B B

M A A B B





  

 





 



 

 



11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M

C M M

C M M

C M M M M

  











 


7 multiplications

18 additions/subtractions

Subtraction!

STRASSEN’S NN ALGORITHM

View each n  n matrix as a 2  2 matrix whose elements

are n/2  n/2 matrices.

Apply the 22 algorithm recursively.

T(n) = 7 T(n/2) + O(n2)

T(n) = O(nlog7/log2)=O(n2.81)

Works over any ring!

MATRIX MULTIPLICATION ALGORITHMS

The O(n2.81) bound of Strassen was improved by Pan, Bini-

Capovani-Lotti-Romani, Schönhage and finally by

Coppersmith and Winograd to O(n2.376).

The algorithms are much more complicated…

We let 2 ≤  < 2.376 be the

exponent of matrix multiplication.

Many believe that =2+o(1).

RECTANGULAR MATRIX MULTIPLICATION

[Coppersmith ’97]: n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

 = n

p

p

n

n

n

Naïve complexity: n2p

BOOLEAN MATRIX MULTIPLICATION

 = ()
i j

A a ()
i j

B b ()
i j

C ci

j

Can be also computed in O(nω) time.

TRANSITIVE CLOSURE

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in

which (u,v)E* iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n) time.

ADJACENCY MATRIX

OF A DIRECTED GRAPH

1

3
2

4

6

5

If A is the adjacency matrix of a graph, then (A2)ij=1 iff

there is a path (i, w, j) for a vertex w.

ADJACENCY MATRIX

OF A DIRECTED GRAPH

1

3
2

4

6

5

Similarly, if A is the adjacency matrix of a graph, then

(Ak)ij=1 iff there is a path of length k from i to j.

TRANSITIVE CLOSURE

USING MATRIX MULTIPLICATION

 Let G=(V,E) be a directed graph.

 The transitive closure G*=(V,E*) is the graph in

which (u,v)E* iff there is a path from u to v.

 If A is the adjacency matrix of G,

 then (AI)n1=An-1An-2…AI is the adjacency

matrix of G*.

 The matrix (AI)n1 can be computed by log n

squaring operations in O(nlog n) time.

 Thus, the transitive closure can also be computed

in Õ(n) time.

UNDIRECTED UNWEIGHTED APSP

 An O(nω) algorithm for undirected unweighted

graphs (Seidel)

DISTANCES IN G AND ITS SQUARE G2

Let G=(V,E). Then G2=(V,E2), where (u,v)E2 if and only if

(u,v)E or there exists wV such that (u,w),(w,v)E

Let δ (u,v) be the distance from u to v in G.

Let δ2(u,v) be the distance from u to v in G2.

δ(u,v)=5 δ2(u,v)=3

DISTANCES IN G AND ITS SQUARE G2 (CONT.)

Lemma: δ2(u,v)=δ(u,v)/2 , for every u,vV.

Thus: δ(u,v) = 2δ2(u,v) or

 δ(u,v) = 2δ2(u,v)1

δ2(u,v) ≤δ(u,v)/2

δ(u,v) ≤2δ2(u,v)

RECURSIVE PROCEDURE

 Suppose we have recursively computed the distance

δ2(u,v) for all pair u,v in G2.

 That is, we have the distance matrix C of G2

 Then either δ(u,v) = 2δ2(u,v) or δ(u,v) = 2δ2(u,v)1

 We need to determine which one δ(u,v) is.

EVEN DISTANCES

Lemma: If δ(u,v)=2δ2(u,v) then for every neighbor w of v we

have δ2(u,w) ≥ δ2(u,v).

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G2



 2(u,w)
(v,w)E

 deg(v)  2(u,v)



 2(u,w) Aw,v
wV

  (C A)u,v deg(v) 
2(u,v)

ODD DISTANCES

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every neighbor w of v we

have δ2(u,w)  δ2(u,v) and for at least one neighbor δ2(u,w) <

δ2(u,v).



 2(u,v)



 2(u,v) 1

ODD DISTANCES

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every neighbor w of v we

have δ2(u,w)  δ2(u,v) and for at least one neighbor δ2(u,w) <

δ2(u,v).

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G2



 2(u,w)
(v,w)E

  deg(v)  2(u,v)



 2(u,w) Aw,v
wV

  (C A)u,v  deg(v) 
2(u,v)



 2(u,v)



 2(u,v) 1

RECURSIVE PROCEDURE

 Suppose we have recursively computed the distance

δ2(u,v) for all pairs u,v in G2.

 That is, we have the distance matrix C of G2

 Then either δ(u,v) = 2δ2(u,v) or δ(u,v) = 2δ2(u,v)1

 Thus, we can judge which one δ(u,v) is for all pairs u,v by

computing the matrix product CA

SEIDEL’S ALGORITHM

1. If A is an all one matrix,

then all distances are 1.

Assume that A has

1’s on the diagonal.

SEIDEL’S ALGORITHM

1. If A is an all one matrix,

then all distances are 1.

2. Compute A2, the adjacency

matrix of the squared graph.

3. Find, recursively, the distances

in the squared graph.

Boolean matrix

multiplicaion

SEIDEL’S ALGORITHM

1. If A is an all one matrix,

then all distances are 1.

2. Compute A2, the adjacency

matrix of the squared graph.

3. Find, recursively, the distances

in the squared graph.

4. Decide, using one integer matrix

multiplication, for every two

vertices u,v, whether their

distance is twice the distance in

the square, or twice minus 1.

Integer matrix

multiplicaion

SEIDEL’S ALGORITHM

Algorithm APD(A)

if A=J then

 return J–I

else

 C←APD(A2)

 X←CA , deg←Ae–1

 dij←2cij– [xij< cijdegj]

 return D

end

1. If A is an all one matrix,

then all distances are 1.

2. Compute A2, the adjacency

matrix of the squared graph.

3. Find, recursively, the distances

in the squared graph.

4. Decide, using one integer matrix

multiplication, for every two

vertices u,v, whether their

distance is twice the distance in

the square, or twice minus 1.

Complexity:

O(nlog n)

Running time Authors

Mn [Shoshan-Zwick ’99]

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs.

Edge weights in {0,1,…M}

Improves results of

[Alon-Galil-Margalit ’91] [Seidel ’95]

DIRECTED UNWEIGHTED APSP

 We will first talk about min-plus matrix

multiplication

AN INTERESTING SPECIAL CASE

OF THE APSP PROBLEM

A B

17

23

Min-Plus

product

2

5

10

20

30

20

MIN-PLUS PRODUCTS





































































125

703

48

528

5

731

571

252

1036

SOLVING APSP BY REPEATED

SQUARING

D  W

for i 1 to log2n

do D  D*D

If W is an n by n matrix containing the edge weights

of a graph. Then Wn is the distance matrix.

Thus: APSP(n)  MPP(n) log n

Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized

by paths that use at most k edges.

ALGEBRAIC

PRODUCT

ij ik kj

k

C A B

c a b

 

 

O(n2.38)

Min-Plus

Product

min operation
has no inverse!

ALGEBRAIC

PRODUCT

ij ik kj

k

C A B

c a b

 

 

O(n2.38)

Min-Plus

Product

There is still no O(n3-ε)
algorithm for real
weighted min-plus
product

Using matrix multiplication

to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

     
     

      
     
     

min{ }ij ik kj
k

c a b 

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x

x x x x

   
     
            

    
   

Using matrix multiplication

to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x

x x x x

   
     
            

    
   

n
polynomial

products

M

operations

per

polynomial

product

 =

Mn
operations

per max-

plus product

Assume: 0 ≤ aij , bij ≤ M

Trying to implement the

repeated squaring algorithm

Consider an easy case:

all weights are 1.

D  W

 for i 1 to log2n do

 D  D*D

After the i-th iteration, the finite elements in

D are in the range {1,…,2i}.

The cost of the min-plus product is 2i n

The cost of the last product is n+1 !!!

A SIMPLE OBSERVATION

 If we randomly choose a subset S of n/k vertices

 Then any path of length k will contain a vertex in

S with high-probability

A SIMPLE OBSERVATION

 If we randomly choose a subset S of n/k vertices

 Then any path of length k will contain a vertex in

S with high-probability

 So we just need to compute a rectangular matrix

multiplication when computing large distances

• If we randomly choose a bridging set B of vertices,

• Consider a shortest path that uses at most (3/2)i+1

edges, we wish that there is a vertex of B in the

middle range

• Then the path is composed of two subpaths of

length ≤(3/2)i.

 1
2

3
2

i

 1
2

3
2

i

 1
2

3
2

i
at most at most

Let s = (3/2)i+1
Failure

probability:
1 −

|𝐵|

𝑛

𝑠/3

• Let

 1
2

3
2

i

 1
2

3
2

i

 1
2

3
2

i
at most at most

Let s = (3/2)i+1
Failure

probability
:

1 −
9 ln 𝑛

𝑠

𝑠/3

< 𝑛−3

𝐵 = 9𝑛 ln 𝑛/𝑠

SAMPLED REPEATED SQUARING (Z ’98)

D  W

for i 1 to log3/2n do

{

s  (3/2)i+1

B  rand(V , (9n ln n)/s)

D  min{ D , D[V,B]*D[B,V] }

}

Choose a subset of V of size (9n ln

n)/s

Select the columns of D

whose

indices are in B

Select the rows

of D whose indices are in B

SAMPLED REPEATED SQUARING (Z ’98)

D  W

for i 1 to log3/2n do

{

s  (3/2)i+1

B  rand(V , (9n ln n)/s)

D  min{ D , D[V,B]*D[B,V] }

}

With high probability,

all distances are correct!

The is also a slightly more complicated deterministic algorithm

SAMPLED DISTANCE PRODUCTS (Z ’98)

n

n

n

|B|

In the i-th iteration, the

set B is of size n ln n / s,

where s = (3/2)i+1

The matrices get

smaller and smaller

but the elements get

larger and larger

COMPLEXITY OF APSP ALGORITHM

The i-th iteration:

 n

n ln n / s

n n
 ln

 n
 /

 s

s=(3/2)i+1

The elements

are of absolute

value at most Ms

0.54 3
1.85min{ , }

n n
Ms n

s s

 
  

 

0.68 2.58M n

SUMMARY

Problem Running time Authors

Transitive closure O(nω)=O(n2.38) trivial

Undirected unweighted APSP O(nω)=O(n2.38) Seidel ’95

Undirected APSP O(Mn2.38) Shoshan-Zwick ’99

Directed APSP O(M0.68n2.58) Zwick ’98

(1+ε)-Approximate APSP O(n2.38 log M)/ε

Zwick ’98

All-Pairs Shortest Paths with integer edge

weights in {1,2,…,M}

OPEN PROBLEMS

 An O(n2.38) algorithm for the directed unweighted

APSP problem?

 An O(n3-ε) algorithm for the APSP

problem with edge weights in {1,2,…,n}?

 An O(n2.5-ε) algorithm for the SSSP problem

with edge weights in {0,±1, ±2,…, ±n}?

THANK YOU!

