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ALL-PAIR SHORTEST PATH 

 Run the Dijkstra’s algorithm from every vertex 

 Running time: O(mn+n2log n) 

 Floyd-Warshall algorithm 

 Running time: O(n3) 

 
FloydWarshall() 

For k=1 to n do 

 For i=1 to n do 

For j=1 to n do 

 d(i,j)=min{d(i,j), d(i,k)+d(k,j)} 
 



ALL-PAIR SHORTEST PATH 

 Run the Dijkstra’s algorithm from every vertex 

 Running time: O(mn+n2log n) 

 Floyd-Warshall algorithm 

 Running time: O(n3) 

 

 There is no truly sub-cubic algorithm for real-

weighted APSP 

 Major open problem in graph theory 

 



ALL-PAIRS SHORTEST PATHS 
IN DIRECTED GRAPHS WITH “REAL” EDGE WEIGHTS 

Running time Authors 

n3 [Floyd ’62] [Warshall ’62] 

n3 (log log n / log n)1/3 [Fredman ’76] 

n3 (log log n / log n)1/2 [Takaoka ’92] 

n3 / (log n)1/2 [Dobosiewicz ’90] 

n3 (log log n / log n)5/7 [Han ’04] 

n3 log log n / log n [Takaoka ’04] 

n3 (log log n)1/2 / log n [Zwick ’04] 

n3 / log n [Chan ’05] 

n3 (log log n / log n)5/4 [Han ’06] 

n3 (log log n)3 / (log n)2 [Chan ’07] 



IN THIS TALK… 

 We will use fast matrix multiplication algorithm 

to get o(n3) all-pair shortest path for small 

integer weights. 

 

 The time for fast matrix multiplication is O(nω), 

ω=2.373 at present 

 Improved by V. Williams this year from the well-

known Coppersmith-Winograd bound of 2.376 

 We still use 2.376 bound in this talk. 



OUTLINE 

 Algebraic matrix multiplication 

 Transitive closure in O(nω) time 

 APSP in undirected unweighted graphs in O(nω) 

time. 

 APSP in directed graphs 

 Time: O(M0.68n2.58) for integer weighted [1..M] graphs 

 Min-plus product for matrices 



ALGEBRAIC MATRIX MULTIPLICATION 

 = ( )
i j

A a ( )
i j

B b ( )
i j

C ci 

j 

Can be computed naively in O(n3) time. 



MATRIX MULTIPLICATION ALGORITHMS 

Authors Complexity 

— n3 

Strassen  (1969) n2.81 

Coppersmith, Winograd (1990) n2.38 

Conjecture/Open problem:  n2+o(1)   ??? 



MULTIPLYING 22 MATRICES 

8 multiplications 

4 additions 

T(n) = 8 T(n/2) + O(n2) 

T(n) = O(nlog8/log2)=O(n3) 

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22



STRASSEN’S 22 ALGORITHM 

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B

C A B A B

C A B A B

C A B A B

 

 

 

 

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

( )( )

( )

( )

( )

( )

( )( )

( )( )

M A A B B

M A A B

M A B B

M A B B

M A A B

M A A B B

M A A B B





  

 





 



 

 



11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M

C M M

C M M

C M M M M

  











 


7 multiplications 

18 additions/subtractions 

Subtraction! 



STRASSEN’S NN ALGORITHM 

View each n  n matrix as a 2  2 matrix whose elements 

are n/2  n/2 matrices.  

Apply the 22 algorithm recursively. 

T(n) = 7 T(n/2) + O(n2) 

T(n) = O(nlog7/log2)=O(n2.81) 

Works over any ring! 



MATRIX MULTIPLICATION ALGORITHMS 

The O(n2.81) bound of Strassen was improved by Pan, Bini-

Capovani-Lotti-Romani, Schönhage and finally by 

Coppersmith and Winograd to O(n2.376).  

The algorithms are much more complicated… 

We let 2 ≤  < 2.376 be the  

exponent of matrix multiplication. 

Many believe that =2+o(1).  



RECTANGULAR MATRIX MULTIPLICATION 

[Coppersmith ’97]:  n1.85p0.54+n2+o(1) 

For p ≤ n0.29, complexity = n2+o(1)  !!! 

 = n 

p 

p 

n 

n 

n 

Naïve complexity:        n2p 



BOOLEAN MATRIX MULTIPLICATION 

 = ( )
i j

A a ( )
i j

B b ( )
i j

C ci 

j 

Can be also computed in O(nω) time. 



TRANSITIVE CLOSURE 

Let G=(V,E) be a directed graph. 

The transitive closure G*=(V,E*) is the graph in 

which (u,v)E* iff there is a path from u to v. 

Can be easily computed in O(mn) time. 

Can also be computed in O(n) time. 



ADJACENCY MATRIX  

OF A DIRECTED GRAPH 

1 

3 
2 

4 

6 

5 

If A is the adjacency matrix of a graph, then (A2)ij=1 iff 

there is a path (i, w, j) for a vertex w. 



ADJACENCY MATRIX  

OF A DIRECTED GRAPH 

1 

3 
2 

4 

6 

5 

Similarly, if A is the adjacency matrix of a graph, then 

(Ak)ij=1 iff there is a path of length k from i to j. 



TRANSITIVE CLOSURE  

USING MATRIX MULTIPLICATION 

 Let G=(V,E) be a directed graph. 

 The transitive closure G*=(V,E*) is the graph in 

which (u,v)E* iff there is a path from u to v.  

 If A is the adjacency matrix of G,  

 then (AI)n1=An-1An-2…AI is the adjacency 

matrix of G*. 

 The matrix (AI)n1 can be computed by log n 

squaring operations in O(nlog n) time. 

 

 Thus, the transitive closure can also be computed 

in Õ(n) time. 

 

 

 

 



UNDIRECTED UNWEIGHTED APSP 

 An O(nω) algorithm for undirected unweighted 

graphs (Seidel) 



DISTANCES IN G AND ITS SQUARE G2 

Let G=(V,E). Then G2=(V,E2), where (u,v)E2 if and only if 

(u,v)E or there exists wV such that (u,w),(w,v)E 

Let δ (u,v) be the distance from u to v in G. 

Let δ2(u,v) be the distance from u to v in G2. 

δ(u,v)=5 δ2(u,v)=3 



DISTANCES IN G AND ITS SQUARE G2 (CONT.) 

Lemma:   δ2(u,v)=δ(u,v)/2  ,  for every u,vV.  

Thus: δ(u,v) = 2δ2(u,v)  or 

          δ(u,v) = 2δ2(u,v)1  

δ2(u,v) ≤δ(u,v)/2 

δ(u,v) ≤2δ2(u,v) 



RECURSIVE PROCEDURE 

 Suppose we have recursively computed the distance 

δ2(u,v) for all pair u,v in G2. 

 That is, we have the distance matrix C of G2 

 Then either δ(u,v) = 2δ2(u,v)  or δ(u,v) = 2δ2(u,v)1 

 We need to determine which one δ(u,v) is. 



EVEN DISTANCES 

Lemma: If δ(u,v)=2δ2(u,v) then for every neighbor w of v we 

have δ2(u,w) ≥ δ2(u,v). 

Let A be the adjacency matrix of the G. 

Let C be the distance matrix of G2 



 2(u,w)
(v,w)E

 deg(v)  2(u,v)



 2(u,w) Aw,v
wV

  (C A)u,v deg(v) 
2(u,v)



ODD DISTANCES 

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every neighbor w of v we 

have δ2(u,w)  δ2(u,v) and for at least one neighbor δ2(u,w) < 

δ2(u,v). 



 2(u,v)



 2(u,v) 1



ODD DISTANCES 

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every neighbor w of v we 

have δ2(u,w)  δ2(u,v) and for at least one neighbor δ2(u,w) < 

δ2(u,v). 

Let A be the adjacency matrix of the G. 

Let C be the distance matrix of G2 



 2(u,w)
(v,w)E

  deg(v)  2(u,v)



 2(u,w) Aw,v
wV

  (C A)u,v  deg(v) 
2(u,v)



 2(u,v)



 2(u,v) 1



RECURSIVE PROCEDURE 

 Suppose we have recursively computed the distance 

δ2(u,v) for all pairs u,v in G2. 

 That is, we have the distance matrix C of G2 

 

 Then either δ(u,v) = 2δ2(u,v)  or δ(u,v) = 2δ2(u,v)1 

 Thus, we can judge which one δ(u,v) is for all pairs u,v by 

computing the matrix product CA  



SEIDEL’S ALGORITHM 

1. If A is an all one matrix,  

then all distances are 1. 

Assume that A has 

1’s on the diagonal. 



SEIDEL’S ALGORITHM 

1. If A is an all one matrix,  

then all distances are 1. 

2. Compute A2, the adjacency 

matrix of the squared graph. 

3. Find, recursively, the distances 

in the squared graph. 

Boolean matrix 

multiplicaion 



SEIDEL’S ALGORITHM 

1. If A is an all one matrix,  

then all distances are 1. 

2. Compute A2, the adjacency 

matrix of the squared graph. 

3. Find, recursively, the distances 

in the squared graph. 

4. Decide, using one integer matrix 

multiplication, for every two 

vertices u,v, whether their 

distance is twice the distance in 

the square, or twice minus 1. 

Integer matrix 

multiplicaion 



SEIDEL’S ALGORITHM 

Algorithm APD(A) 

if A=J then 

   return J–I 

else 

   C←APD(A2) 

   X←CA , deg←Ae–1 

   dij←2cij– [xij< cijdegj] 

   return D 

end 

1. If A is an all one matrix,  

then all distances are 1. 

2. Compute A2, the adjacency 

matrix of the squared graph. 

3. Find, recursively, the distances 

in the squared graph. 

4. Decide, using one integer matrix 

multiplication, for every two 

vertices u,v, whether their 

distance is twice the distance in 

the square, or twice minus 1. 

Complexity:  

O(nlog n) 



Running time Authors 

Mn [Shoshan-Zwick ’99] 

All-Pairs Shortest Paths 
in graphs with small integer weights 

Undirected graphs.  

Edge weights in {0,1,…M} 

Improves results of  

[Alon-Galil-Margalit ’91] [Seidel ’95] 



DIRECTED UNWEIGHTED APSP 

 We will first talk about min-plus matrix 

multiplication 



AN INTERESTING SPECIAL CASE 

OF THE APSP PROBLEM 

A B 

17 

23 

Min-Plus 

product 

2 

5 

10 

20 

30 

20 



MIN-PLUS PRODUCTS 
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
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SOLVING APSP BY REPEATED 

SQUARING 

D  W  

for i 1 to log2n  

do D  D*D 

If W is an n by n matrix containing the edge weights 

of a graph. Then Wn is the distance matrix. 

Thus:    APSP(n)  MPP(n) log n 

Actually:  APSP(n) = O(MPP(n)) 

By induction, Wk gives the distances realized  

by paths that use at most k edges.  



ALGEBRAIC 

PRODUCT 

ij ik kj

k

C A B

c a b

 

 

O(n2.38)  

Min-Plus 

Product 

min operation  
has no inverse! 



ALGEBRAIC 

PRODUCT 

ij ik kj

k

C A B

c a b

 

 

O(n2.38)  

Min-Plus 

Product 

There is still no O(n3-ε) 
algorithm for real 
weighted min-plus 
product 



Using matrix multiplication 

to compute min-plus products 

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

     
     

      
     
     

min{ }ij ik kj
k

c a b 

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x

x x x x

   
     
            

    
   



Using matrix multiplication 

to compute min-plus products 

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x

x x x x

   
     
            

    
   

n 
polynomial 

products 

M  

operations 

per 

polynomial 

product 

 = 

Mn  
operations 

per max-

plus product 

Assume:   0 ≤ aij , bij ≤ M 



Trying to implement the  

repeated squaring algorithm 

Consider an easy case:  

all weights are 1. 

D  W  

 for i 1 to log2n do 

  D  D*D 

After the i-th iteration, the finite elements in 

D are in the range {1,…,2i}. 

The cost of the min-plus product is 2i n 

The cost of the last product is n+1 !!! 



A SIMPLE OBSERVATION 

 If we randomly choose a subset S of n/k vertices 

 Then any path of length k will contain a vertex in 

S with high-probability 



A SIMPLE OBSERVATION 

 If we randomly choose a subset S of n/k vertices 

 Then any path of length k will contain a vertex in 

S with high-probability 

 

 So we just need to compute a rectangular matrix 

multiplication when computing large distances 



• If we randomly choose a bridging set B of vertices,  

• Consider a shortest path that uses at most (3/2)i+1 

edges, we wish that there is a vertex of B in the 

middle range 

• Then the path is composed of two subpaths of 

length ≤(3/2)i. 

 1
2

3
2

i

 1
2

3
2

i

 1
2

3
2

i
at most at most 

Let s = (3/2)i+1 
Failure 

probability: 
1 −

|𝐵|

𝑛

𝑠/3

 



• Let 

 1
2

3
2

i

 1
2

3
2

i

 1
2

3
2

i
at most at most 

Let s = (3/2)i+1 
Failure 

probability 
: 

1 −
9 ln 𝑛

𝑠

𝑠/3

< 𝑛−3 

𝐵 = 9𝑛 ln 𝑛/𝑠 



SAMPLED REPEATED SQUARING  (Z ’98) 

D  W 

for i 1 to log3/2n do 

{ 

s  (3/2)i+1 

B  rand( V , (9n ln n)/s ) 

D  min{ D , D[V,B]*D[B,V] } 

} 

Choose a subset of V of size (9n ln 

n)/s 

Select the columns of D 

whose  

indices are in B 

Select the rows 

of D whose indices are in B 



SAMPLED REPEATED SQUARING  (Z ’98) 

D  W 

for i 1 to log3/2n do 

{ 

s  (3/2)i+1 

B  rand( V , (9n ln n)/s ) 

D  min{ D , D[V,B]*D[B,V] } 

} 

With high probability,  

all distances are correct! 

The is also a slightly more complicated deterministic algorithm 



SAMPLED DISTANCE PRODUCTS (Z ’98) 

n 

n 

n 

|B| 

In the i-th iteration, the 

set B is of size n ln n / s, 

where s = (3/2)i+1 

The matrices get 

smaller and smaller  

but the elements get 

larger and larger 



COMPLEXITY OF APSP ALGORITHM 

The i-th iteration: 

 n 

n ln n / s 

n n
 ln

 n
 /

 s
 

s=(3/2)i+1 

The elements 

are of absolute 

value at most Ms 

0.54 3
1.85min{ , }

n n
Ms n

s s

 
  

 

0.68 2.58M n



SUMMARY 

Problem Running time Authors 

Transitive closure O(nω)=O(n2.38) trivial 

Undirected unweighted APSP O(nω)=O(n2.38) Seidel ’95 

Undirected APSP O(Mn2.38) Shoshan-Zwick ’99 

Directed APSP O(M0.68n2.58) Zwick ’98 

(1+ε)-Approximate APSP O(n2.38 log M)/ε 
 

Zwick ’98 

All-Pairs Shortest Paths with integer edge 

weights in {1,2,…,M} 



OPEN PROBLEMS 

 An O(n2.38) algorithm for the directed unweighted 

APSP problem? 

 An O(n3-ε) algorithm for the APSP  

problem with edge weights in {1,2,…,n}? 

 An O(n2.5-ε) algorithm for the SSSP problem  

with edge weights in {0,±1, ±2,…, ±n}? 



THANK YOU! 


