ALL-PAIR SHORTEST PATH VIA FAST MATRIX MULTIPLICATION Ran Duan

ALL-PAIR SHORTEST PATH

- Run the Dijkstra's algorithm from every vertex
 - Running time: O(mn+n²log n)
- Floyd-Warshall algorithm
 - Running time: O(n³)

```
FloydWarshall() \\ For k=1 to n do \\ For i=1 to n do \\ For j=1 to n do \\ d(i,j)=min\{d(i,j),\ d(i,k)+d(k,j)\}
```

ALL-PAIR SHORTEST PATH

- Run the Dijkstra's algorithm from every vertex
 - Running time: O(mn+n²log n)
- Floyd-Warshall algorithm
 - Running time: O(n³)
- There is no truly sub-cubic algorithm for realweighted APSP
 - Major open problem in graph theory

ALL-PAIRS SHORTEST PATHS

IN DIRECTED GRAPHS WITH "REAL" EDGE WEIGHTS

Running time	Authors
n^3	[Floyd '62] [Warshall '62]
$n^3 (\log \log n / \log n)^{1/3}$	[Fredman '76]
$n^3 (\log \log n / \log n)^{1/2}$	[Takaoka '92]
$n^3/(\log n)^{1/2}$	[Dobosiewicz '90]
$n^3 (\log \log n / \log n)^{5/7}$	[Han '04]
$n^3 \log \log n / \log n$	[Takaoka '04]
$n^3 (\log \log n)^{1/2} / \log n$	[Zwick '04]
$n^3/\log n$	[Chan '05]
$n^3 (\log \log n / \log n)^{5/4}$	[Han '06]
$n^3 (\log \log n)^3 / (\log n)^2$	[Chan '07]

IN THIS TALK...

- We will use fast matrix multiplication algorithm to get o(n³) all-pair shortest path for small integer weights.
- The time for fast matrix multiplication is $O(n^{\omega})$, $\omega=2.373$ at present
 - Improved by V. Williams this year from the well-known Coppersmith-Winograd bound of 2.376
 - We still use 2.376 bound in this talk.

OUTLINE

- Algebraic matrix multiplication
- o Transitive closure in O(n^ω) time
- APSP in undirected unweighted graphs in O(n^ω) time.
- APSP in directed graphs
 - Time: $O(M^{0.68}n^{2.58})$ for integer weighted [1..M] graphs
 - Min-plus product for matrices

ALGEBRAIC MATRIX MULTIPLICATION

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Can be computed naively in $O(n^3)$ time.

MATRIX MULTIPLICATION ALGORITHMS

Complexity	Authors
n^3	
$n^{2.81}$	Strassen (1969)
$n^{2.38}$	Coppersmith, Winograd (1990)

Conjecture/Open problem: $n^{2+o(1)}$???

MULTIPLYING 2×2 MATRICES

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

4 additions

$$T(n) = 8 T(n/2) + O(n^2)$$

$$T(n) = O(n^{\log 8/\log 2}) = O(n^3)$$

STRASSEN'S 2×2 ALGORITHM

Subtraction!

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_2 = (A_{21} + A_{22})B_{11}$$

$$M_3 = A_{11}(B_{12} - B_{22})$$

$$M_4 = A_{22}(B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12})B_{22}$$

$$M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

7 multiplications

18 additions/subtractions

STRASSEN'S N×N ALGORITHM

View each $n \times n$ matrix as a 2×2 matrix whose elements are $n/2 \times n/2$ matrices.

Apply the 2×2 algorithm recursively.

$$T(n) = 7 T(n/2) + O(n^2)$$

$$T(n) = O(n^{\log 7/\log 2}) = O(n^{2.81})$$

Works over any ring!

MATRIX MULTIPLICATION ALGORITHMS

The $O(n^{2.81})$ bound of Strassen was improved by Pan, Bini-Capovani-Lotti-Romani, Schönhage and finally by Coppersmith and Winograd to $O(n^{2.376})$.

The algorithms are much more complicated...

We let $2 \le \omega \le 2.376$ be the exponent of matrix multiplication.

Many believe that $\omega = 2 + o(1)$.

RECTANGULAR MATRIX MULTIPLICATION

Naïve complexity: n^2p

[Coppersmith '97]: $n^{1.85}p^{0.54}+n^{2+o(1)}$

For $p \le n^{0.29}$, complexity = $n^{2+o(1)}$!!!

BOOLEAN MATRIX MULTIPLICATION

$$c_{ij} = \bigvee_{k=1} a_{ik} \wedge b_{kj}$$

Can be also computed in $O(n^{\omega})$ time.

TRANSITIVE CLOSURE

Let G=(V,E) be a directed graph.

The transitive closure $G^*=(V,E^*)$ is the graph in which $(u,v)\in E^*$ iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in $O(n^{\omega})$ time.

ADJACENCY MATRIX OF A DIRECTED GRAPH

If A is the adjacency matrix of a graph, then $(A^2)_{ij}=1$ iff there is a path (i, w, j) for a vertex w.

ADJACENCY MATRIX OF A DIRECTED GRAPH

Similarly, if A is the adjacency matrix of a graph, then $(A^k)_{ij}=1$ iff there is a path of length k from i to j.

TRANSITIVE CLOSURE USING MATRIX MULTIPLICATION

- Let G=(V,E) be a directed graph.
- The transitive closure $G^*=(V,E^*)$ is the graph in which $(u,v) \in E^*$ iff there is a path from u to v.
- If A is the adjacency matrix of G, then $(A \lor I)^{n-1} = A^{n-1} \lor A^{n-2} \lor ... \lor A \lor I$ is the adjacency matrix of G^* .
 - The matrix $(A \lor I)^{n-1}$ can be computed by $\log n$ squaring operations in $O(n^{\omega} \log n)$ time.
- Thus, the transitive closure can also be computed in $\tilde{O}(n^{\omega})$ time.

Undirected unweighted apsp

• An O(n^ω) algorithm for undirected unweighted graphs (Seidel)

DISTANCES IN G AND ITS SQUARE G^2

Let G=(V,E). Then $G^2=(V,E^2)$, where $(u,v) \in E^2$ if and only if $(u,v) \in E$ or there exists $w \in V$ such that $(u,w),(w,v) \in E$

Let $\delta(u,v)$ be the distance from u to v in G. Let $\delta^2(u,v)$ be the distance from u to v in G^2 .

DISTANCES IN G AND ITS SQUARE G^2 (CONT.)

 $\delta(u,v) \le 2\delta^2(u,v)$

Lemma: $\delta^2(u,v) = \lceil \delta(u,v)/2 \rceil$, for every $u,v \in V$.

Thus:
$$\delta(u,v) = 2\delta^2(u,v)$$
 or $\delta(u,v) = 2\delta^2(u,v) - 1$

RECURSIVE PROCEDURE

- Suppose we have recursively computed the distance $\delta^2(u,v)$ for all pair u,v in G^2 .
 - That is, we have the distance matrix C of G²
- Then either $\delta(u,v) = 2\delta^2(u,v)$ or $\delta(u,v) = 2\delta^2(u,v) 1$
 - We need to determine which one $\delta(u,v)$ is.

EVEN DISTANCES

Lemma: If $\delta(u,v)=2\delta^2(u,v)$ then for every neighbor w of v we have $\delta^2(u,w) \ge \delta^2(u,v)$.

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G^2

$$\sum_{(v,w)\in E} \delta^{2}(u,w) \ge \deg(v) \cdot \delta^{2}(u,v)$$

$$\sum_{w\in V} \delta^{2}(u,w) \cdot A_{w,v} = (C \cdot A)_{u,v} \ge \deg(v) \cdot \delta^{2}(u,v)$$

ODD DISTANCES

Lemma: If $\delta(u,v)=2\delta^2(u,v)-1$ then for every neighbor w of v we have $\delta^2(u,w) \le \delta^2(u,v)$ and for at least one neighbor $\delta^2(u,w) \le \delta^2(u,v)$.

ODD DISTANCES

Lemma: If $\delta(u,v)=2\delta^2(u,v)-1$ then for every neighbor w of v we have $\delta^2(u,w) \le \delta^2(u,v)$ and for at least one neighbor $\delta^2(u,w) \le \delta^2(u,v)$.

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G^2

$$\sum_{(v,w)\in E} \mathcal{S}^2(u,w) < \deg(v) \cdot \mathcal{S}^2(u,v)$$

$$\sum_{w\in V} \mathcal{S}^2(u,w) \cdot A_{w,v} = (C \cdot A)_{u,v} < \deg(v) \cdot \mathcal{S}^2(u,v)$$

RECURSIVE PROCEDURE

- Suppose we have recursively computed the distance $\delta^2(u,v)$ for all pairs u,v in G^2 .
 - That is, we have the distance matrix C of G²
- Then either $\delta(u,v) = 2\delta^2(u,v)$ or $\delta(u,v) = 2\delta^2(u,v) 1$
 - Thus, we can judge which one $\delta(u,v)$ is for all pairs u,v by computing the matrix product C•A

SEIDEL'S ALGORI Assume that A has

Assume that *A* has 1's on the diagonal.

1. If *A* is an all one matrix, then all distances are 1.

SEIDEL'S ALGORITHM

- 1. If *A* is an all one matrix, then all distances are 1.
- 2. Compute A^2 , the adjacency matrix of the squared graph.
- 3. Find, recursively, the distances in the squared graph.

Boolean matrix multiplicaion

SEIDEL'S ALGORITHM

- 1. If *A* is an all one matrix, then all distances are 1.
- 2. Compute A^2 , the adjacency matrix of the squared graph.
- 3. Find, recursively, the distances in the squared graph.
- 4. Decide, using one integer matrix multiplication, for every two vertices *u*,*v*, whether their distance is **twice** the distance in the square, or **twice minus 1**.

Integer matrix multiplicaion

SEIDEL'S ALGORITHM

- If A is an all one matrix, then all distances are 1.
- Compute A^2 , the adjacency matrix of the squared graph.
- Find, recursively, the distances in the squared graph.
- Decide, using one integer matrix multiplication, for every two vertices u,v, whether their distance is **twice** the distance in the square, or twice minus 1.

Algorithm APD(A)if A=J then return J–Ielse $C \leftarrow APD(A^2)$ $X \leftarrow CA$, deg $\leftarrow Ae-1$ $d_{ij} \leftarrow 2c_{ij} - [x_{ij} < c_{ii} \deg_i]$ return Dend

Complexity:

 $O(n^{\omega}\log n)$

All-Pairs Shortest Paths in graphs with small integer weights

Undirected graphs.

Edge weights in $\{0,1,...M\}$

Running time	Authors
Mn^{ω}	[Shoshan-Zwick '99]

Improves results of [Alon-Galil-Margalit '91] [Seidel '95]

DIRECTED UNWEIGHTED APSP

• We will first talk about min-plus matrix multiplication

AN INTERESTING SPECIAL CASE OF THE APSP PROBLEM

MIN-PLUS PRODUCTS

$$C = A *B$$

$$c_{ij} = \min_{k} \{a_{ik} + b_{kj}\}$$

$$\begin{pmatrix} -6 & -3 & -10 \\ 2 & 5 & -2 \\ -1 & -7 & -5 \end{pmatrix} = \begin{pmatrix} 1 & -3 & 7 \\ +\infty & 5 & +\infty \\ 8 & 2 & -5 \end{pmatrix} * \begin{pmatrix} 8 & +\infty & -4 \\ -3 & 0 & -7 \\ 5 & -2 & 1 \end{pmatrix}$$

SOLVING APSP BY REPEATED SQUARING

If W is an n by n matrix containing the edge weights of a graph. Then W^n is the distance matrix.

By induction, W^k gives the distances realized by paths that use at most k edges.

$$\begin{array}{l} D \leftarrow W \\ \text{for } i \leftarrow 1 \text{ to} \lceil \log_2 n \rceil \\ \text{do } D \leftarrow D^*D \end{array}$$

Thus: $APSP(n) \le MPP(n) \log n$

Actually: APSP(n) = O(MPP(n))

ALGEBRAIC PRODUCT

$$C = A \cdot B$$

$$c_{ij} = \sum_{k} a_{ik} b_{kj}$$

 $O(n^{2.38})$

Min-Plus Product

$$C = A *B$$

$$c_{ij} = \min_{k} \{a_{ik} + b_{kj}\}$$

min operation has no inverse!

ALGEBRAIC PRODUCT

$$C = A \cdot B$$

$$c_{ij} = \sum_{k} a_{ik} b_{kj}$$

$$O(n^{2.38})$$

Min-Plus Product

$$C = A * B$$

$$c_{ij} = \min_{k} \{a_{ik} + b_{kj}\}$$

There is still no O(n^{3-ε}) algorithm for real weighted min-plus product

Using matrix multiplication to compute min-plus products

$$egin{pmatrix} egin{pmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \ \end{array} &= egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ \end{array} & * egin{pmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \ \end{array} & \ddots \end{pmatrix} \ & c_{ij} &= \min_{k} \{a_{ik} + b_{kj}\} \ & c_{'11} & c_{'12} \ c_{'21} & c_{'22} \ \end{array} & = egin{pmatrix} x^{a_{11}} & x^{a_{12}} \ x^{a_{21}} & x^{a_{22}} \ \end{array} & \times egin{pmatrix} x^{b_{11}} & x^{b_{12}} \ x^{b_{21}} & x^{b_{22}} \ \end{array} & \ddots \end{pmatrix} \ & c_{ij} &= first(c_{ij}') \ \hline \end{pmatrix}$$

Using matrix multiplication to compute min-plus products

Assume: $0 \le a_{ij}$, $b_{ij} \le M$

$$egin{pmatrix} c'_{11} & c'_{12} \ c'_{21} & c'_{22} \ & \ddots \end{pmatrix} &= egin{pmatrix} x^{a_{11}} & x^{a_{12}} \ x^{a_{21}} & x^{a_{22}} \ & & \ddots \end{pmatrix} * egin{pmatrix} x^{b_{11}} & x^{b_{12}} \ x^{b_{21}} & x^{b_{22}} \ & & \ddots \end{pmatrix}$$

n[©]
polynomial
products

operations
per
polynomial
product

 Mn^{ω}

operations
per maxplus product

Trying to implement the repeated squaring algorithm

$$D \leftarrow W$$

for $i \leftarrow 1$ to $\log_2 n$ do Consider an easy case:
 $D \leftarrow D^*D$ all weights are 1.

After the *i*-th iteration, the finite elements in D are in the range $\{1,...,2^i\}$.

The cost of the min-plus product is $2^{i} n^{\omega}$

The cost of the last product is $n^{\omega+1}$!!!

A SIMPLE OBSERVATION

- If we randomly choose a subset S of n/k vertices
- Then any path of length k will contain a vertex in S with high-probability

A SIMPLE OBSERVATION

- If we randomly choose a subset S of n/k vertices
- Then any path of length k will contain a vertex in S with high-probability
- So we just need to compute a rectangular matrix multiplication when computing large distances

- If we randomly choose a *bridging* set B of vertices,
- Consider a shortest path that uses at most $(3/2)^{i+1}$ edges, we wish that there is a vertex of B in the middle range
- Then the path is composed of two subpaths of length $\leq (3/2)^i$.

Let
$$\mathbf{s} = (3/2)^{i+1}$$
 Failure probability: $\left(1 - \frac{|B|}{n}\right)^{3/3}$

• Let $|B| = 9n \ln n/s$

Let
$$s = (3/2)^{i+1}$$
 Failure probability: $\left(1 - \frac{9 \ln n}{s}\right)^{s/3} < n^{-3}$

SAMPLED REPEATED SQUARING (Z '98)

```
D \leftarrow W
for i \leftarrow 1 to \log_{3/2} n do
\begin{cases} s \leftarrow (3/2)^{i+1} \\ B \leftarrow \text{rand}(V, (9n \ln n)/s) \\ D \leftarrow \min\{D, D[V,B]*D[B,V]\} \end{cases}
```

Select the **columns** of **D** whose indices are in **B**

Select the **rows** of **D** whose indices are in **B**

SAMPLED REPEATED SQUARING (Z'98)

```
\begin{aligned} D \leftarrow W \\ \text{for } i \leftarrow 1 \text{ to } \log_{3/2} n \text{ do} \\ \{ \\ s \leftarrow (3/2)^{i+1} \\ B \leftarrow \text{rand}(V, (9n \ln n)/s) \\ D \leftarrow \min\{D, D[V,B]*D[B,V] \} \\ \} \end{aligned}
```

With high probability, all distances are correct!

The is also a slightly more complicated deterministic algorithm

SAMPLED DISTANCE PRODUCTS (Z '98)

In the *i*-th iteration, the set *B* is of size $n \ln n / s$, where $s = (3/2)^{i+1}$

The matrices get smaller and smaller but the elements get larger and larger

COMPLEXITY OF APSP ALGORITHM

The i-th iteration:

$$\min\{Ms \cdot n^{1.85} \left(\frac{n}{s}\right)^{0.54}, \frac{n^3}{s}\} \leq M^{0.68} n^{2.58}$$

SUMMARY

All-Pairs Shortest Paths with integer edge weights in {1,2,...,M}

Problem	Running time	Authors
Transitive closure	$O(n^{\omega}) = O(n^{2.38})$	trivial
Undirected unweighted APSP	$O(n^{\omega})=O(n^{2.38})$	Seidel '95
Undirected APSP	$O(Mn^{2.38})$	Shoshan-Zwick '99
Directed APSP	$O(M^{0.68}n^{2.58})$	Zwick '98
(1+e)-Approximate APSP	$O(n^{2.38}\log M)/\varepsilon$	Zwick '98

OPEN PROBLEMS

- An $O(n^{2.38})$ algorithm for the directed unweighted APSP problem?
- An $O(n^{3-\epsilon})$ algorithm for the APSP problem with edge weights in $\{1,2,...,n\}$?
- An $O(n^{2.5-\epsilon})$ algorithm for the SSSP problem with edge weights in $\{0,\pm 1,\pm 2,...,\pm n\}$?

