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Introduction Digraph Pair Cut Cut-covering sets Conclusions

Matroids

A matroid M = (V , I), I ⊆ 2V , is an independence system with
independent sets I satisfying:

1. The empty set is independent
2. A subset of an independent set is independent
3. Augmentation property: If A,B are independent and |B| > |A|,

then there is some b ∈ B − A such that A + b is independent

Rank r(X ): Size of largest independent subset of X
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Examples

Canonical examples:
1. Graphic matroids: Let G = (V ,E) be a graph.

– M = (E , I), I contains cycle-free edge sets
– Rank: number of vertices minus number of components

2. Linear matroids M = (V , I):
– V is a collection of vectors in Fd for some field F
– Independence concept is linear independence
– Rank: dimension

Representable matroid: Can be given as set of vectors.
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Graph cut matroids: Gammoids

Let G = (V ,E) be a graph (possibly directed). Say that T ⊆ V is
linked to S if there are |T | vertex-disjoint paths from S to T (with
distinct endpoints).

The gammoid (G,S) defined by G and S is M = (V , I) where:
I contains all sets linked to S
The rank r(X ) equals the size of an (S,X )-cut

S X

Gammoids are representable.
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Matroids in kernelization

Matroid theory was integral to the following kernelization results:
ODD CYCLE TRANSVERSAL polynomial compression (SODA
2012)
ALMOST 2-SAT polynomial kernel
MULTIWAY CUT WITH DELETABLE TERMINALS

Restrictions of cut problems: MULTIWAY CUT with s terminals,
MULTICUT with s requests, GROUP FEEDBACK VERTEX SET

with fixed group
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Covering terminal min-cuts

Further result: Cut-covering sets

Covering (A,B)-cuts
Let G = (V ,E), S,T ⊆ V , S ∩ T = ∅. We can find a set X ⊆ V of
polynomial size such that for any A ⊆ S and B ⊆ T , X contains a
minimum (A,B)-cut.
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Three uses of matroids

Matroids have seen three types of use in kernelization:
1. Encoding information succinctly
2. Sunflower-type constraints reductions
3. Irrelevant vertex rules
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Three uses of matroids

Matroids have seen three types of use in kernelization:
1. Encoding information succinctly

– ODD CYCLE TRANSVERSAL

2. Sunflower-type constraints reductions
– ALMOST 2-SAT

3. Irrelevant vertex rules
– s-MULTIWAY CUT, cut-covering sets applications
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Matroids for encoding

Matroid M = (V , I), represented by matrix A: r(M) · |V | · `
space, bitlength `

One known use: Gammoids encoding terminal cut functions
– Input: Graph G = (V ,E), terminals T ⊂ V , need to know size of

all min-cuts through T
– O(|T |)×O(|T |) matrix, ` = O(|T |) (Kratsch, W., SODA 2012)
– Now known: Also encodable as graph with O(|T |3) vertices.
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Representative sets
For advanced applications, we need the following notions.

Let M = (V , I) be a matroid, X ⊆ V .
Let t = {t1, . . . , ts} ⊂ V . We say that t extends X if X ∩ t = ∅
and X ∪ t is independent (i.e., r(X ∪ t) = |X |+ |t |).
Let T ⊆

(V
s

)
. We say that T extends X if t extends X , t ∈ T .

A set T ∗ ⊆ T represents T in M if, for any X , T extends X if
and only if T ∗ extends X .

Representative sets (Marx (2006) using Lovász (1977))

Let M = (V , I) be a linear matroid and T ⊆
(V

s

)
. We can find, in

polynomial time, a representative set T ∗ ⊆ T for T in M such
that |T ∗| = O(r(M)s).
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Application: Vertex Cover kernel

Recall the most classical VERTEX COVER kernel.
VERTEX COVER: Given G = (V ,E) and k , does G have a vertex
cover of size at most k?

Buss’ vertex cover kernel
d(v) > k : must include v
d(v) = 0: discard v
|E(G)| > k2: reject instance

Size O(k2) kernel.
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Vertex Cover matroid kernel

Let (G = (V ,E), k) be a Vertex Cover instance.
Matroid M = (V ,

( V
≤k+2

)
) (representable)

Tuple set E ⊆
(V

2

)
“Query set” X ⊆ V , |X | ≤ k
e = {u, v} ∈ E : e extends X if and only if X misses e (u, v /∈ X )
E extends X if and only if X is not a vertex cover
E∗ ⊆ E representative set: E∗ reveals every non-vertex cover

June 14, 2012 12/31
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Vertex Cover matroid kernel

Let (G = (V ,E), k) be a Vertex Cover instance.
Matroid M = (V ,

( V
≤k+2

)
) (representable)

Tuple set E ⊆
(V

2

)
“Query set” X ⊆ V , |X | ≤ k
e = {u, v} ∈ E : e extends X if and only if X misses e (u, v /∈ X )
E extends X if and only if X is not a vertex cover
E∗ ⊆ E representative set: E∗ reveals every non-vertex cover

|E∗| = O(r(M)s) = O(k2).
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A gammoid lemma
For a graph G = (V ,E), sets A,B ⊆ V : Let C(A,B) be the
minimum (A,B)-vertex cut closest to A (may intersect A, B).

Lemma
Let (G = (V ,E),S) define a gammoid, X ⊆ V a set linked to S.
Then for any v ∈ V , v extends X if and only if S reaches v in
G − C(S,X ).

S
X
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A gammoid lemma
For a graph G = (V ,E), sets A,B ⊆ V : Let C(A,B) be the
minimum (A,B)-vertex cut closest to A (may intersect A, B).

Lemma
Let (G = (V ,E),S) define a gammoid, X ⊆ V a set linked to S.
Then for any v ∈ V , v extends X if and only if S reaches v in
G − C(S,X ).

Proof. (1) v extends X : Path must avoid closest cut.

(2) X + v dependent: (S,X + v)-cut, size |X |, cuts v from S.
This is a min-cut, thus the closest cut also cuts v from S.
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The Digraph Pair Cut problem

DIGRAPH PAIR CUT

Input: Digraph G = (V ,E), source s ∈ V , integer k , set P ⊆
(V

2

)
.

Parameter: k
Question: Find k vertices X such that no pair in P is reachable
from s in G − X .

Pair {u, v} reachable: u, v each reachable from s.

Will show: can reduce to O(k2) pairs.
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Digraph Pair Cut example

S
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Digraph Pair Cut example

S

Observation: Closest cuts C(S,X ) suffice.
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An algorithm

Observation: Closest cuts C(S,X ) suffice.
1. Let S = k + 1 copies of s; T = ∅.
2. Recursively try:

2.1 Let X = C(S,T ) (first round X = ∅).
2.2 If |X | > k , reject.
2.3 If X is a solution, return it.
2.4 Find pair {u, v} ∈ P reachable in G − X , recurse with T = T + u

and T = T + v .

Claim: Correctly solves DIGRAPH PAIR CUT in O∗(2k ) steps.
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Testing a proposed solution

Consider a set X ⊂ V , |X | ≤ k .
C := C(S,X ) is a solution: we are happy.
Otherwise, pair {u, v} ∈ P reachable in G − C.
Need to test: S reaches u and v in G − C.

Recall: Lemma
Given (G,S): v extends X iff S reaches v in G − C(S,X ).

To test: (u extends X ) and (v extends X ).
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Testing non-solutions

To test: (u extends X ) and (v extends X ).
1. Let M = (G1,S1) + (G2,S2) (disjoint identical copies of (G,S))
2. Let T = {{u1, v2} : {u, v} ∈ P}.
3. Let X ′ = X1 + X2 (copies of X in G1 and G2)
4. {u1, v2} ∈ T extends X ′ iff u and v each extends X .

Representative set T ∗ ⊆ T sufficient testing set, |T ∗| = O(k2).
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Testing set⇒ polynomial kernel

Input: Instance (G, s, k ,P) of DIGRAPH PAIR CUT.
Have: Representative pairs P∗ ⊆ P.

Pairs in P∗ are enough to dry-run the algorithm.
1. Initially T = ∅
2. Find pair {u, v} ∈ P reachable in G − C(S,T ) (matroid test)
3. Recurse T = T + u and T = T + v
4. Solution size is now |T |
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3. Recurse T = T + u and T = T + v
4. Solution size is now |T |
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Digraph Pair Cut kernelization

Input: Instance (G, s, k ,P) of DIGRAPH PAIR CUT.

1. Find representative pairs P∗ ⊆ P (as seen).
2. Let T =

⋃
P∗ be all vertices in P∗ (|T | = O(k2)).

3. Encode sizes of (S,X )-vertex cuts, X ⊆ T , in small space.

Matrix encoding: O(|S| · |T | · (|S| log |T |)) = Õ(k4) space.

Later: graph with O(|S| · |T | · |S|) = O(k4) vertices.
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Digraph Pair Cut, wrap-up

Constraints reduction: Find O(k2) sufficient constraints (P∗)
Encoding terminal cuts from S to

⋃
P∗ to encode the instance

Cut-covering sets (next) for a “proper” kernel

Not shown:
COMPRESSION ALMOST 2-SAT(k)⇒ DIGRAPH PAIR CUT(2k)
Gives ALMOST 2-SAT polynomial kernel
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Cut-covering sets
Our goal: Find a cut-covering set

Covering (A,B)-cuts
Let G = (V ,E), S,T ⊆ V , S ∩ T = ∅. We can find a set X ⊆ V of
polynomial size such that for any A ⊆ S, B ⊆ T , X contains a
minimum (A,B)-cut.

Not solved by max-flow:

S T
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Irrelevant vertices

Let G = (V ,E), S, and T be given.
Let A ⊆ S, B ⊆ T . A vertex v ∈ V is essential for (A,B) if v is
contained in every minimum (A,B)-cut.
A vertex v ∈ V is irrelevant if it is not essential for any (A,B)
and not contained in S or T .

If we can find an irrelevant vertex, we can reduce the problem.
Plan:

1. Characterize (A,B)-essential vertices
2. Find them with representative sets query
3. Construct query to find all essential vertices
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Characterizing essential vertices

For any vertex v , let v ′ be a sink copy: a copy of v with edges
oriented inwards.

v ∈ X , X + v ′ linked to S ⇔ vertex-disjoint paths from S to X ,
with two paths to v

We will show the following.

Let G = (V ,E), A,B ⊆ V be given. Let C be a minimum
(A,B)-cut. A vertex v ∈ V is essential for (A,B) if and only if
C + v ′ is linked to A and C + v ′ is linked to B.
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Let G = (V ,E), A,B ⊆ V be given. Let C be a minimum
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Proof

G = (V ,E), A,B ⊆ V , minimum cut C as before. To prove:

Vertex v essential for (A,B) iff C + v ′ is linked to A and to B.

1. A vertex v ∈ V is (A,B)-essential if and only if
v ∈ C(A,C) ∩ C(B,C).

– Almost by definition
2. ...if and only if C + v ′ is linked to A and to B

– C + v ′ linked to A iff v ′ reachable from A in G − C(A,C)
– Either v ∈ C(A,C), or C(A,C) cuts v from B
– C + v ′ linked to A and to B ⇔ v ∈ C(A,C) ∩ C(B,C).
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Representative sets query

We have:

Vertex v essential for (A,B) iff C + v ′ is linked to A and to B.

Tweak it:

Vertex v essential for (A,B) iff v ′ extends C in (G,A) and in
(G,B)

Previous trick:

Vertex v essential for (A,B) iff v ′ + v ′ extends C + C in
(G,A) + (G,B)
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Finding all essential vertices

Vertex v essential for (A,B) iff v ′ + v ′ extends C + C in
(G,A) + (G,B) iff v ′ + v ′ extends (C ∪ (S \ A)) + (C ∪ (T \ B)) in
(G,S) + (G,T )

1. M = (G′,S) + (G′,T ), with sink copies added to G
2. P = {(v ′S, v

′
T ) : v ∈ V} (sink copies of v in (G,S) and (G,T ))

3. Representative set P∗ contains one essential vertex for each
pair (A,B)

4. Take r = cut(S,T ) disjoint representative sets (r ≤ |S|, |T |) to
cover every essential vertex.
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Finishing the reduction

Have: O(|S| · |T | · cut(S,T )) potentially essential vertices.

Let v be an irrelevant vertex. We may make v undeletable:
Complete N(v) into a clique.
Delete v from the graph.

This does not change the size of any minimum (A,B)-cut.

Let G′ be the result of iterating the above until no vertex is known
to be irrelevant. Then X = V (G′) is our cut-covering set for the
original graph G.
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Consequences, covering min-cuts

Covering (A,B)-cuts
Let G = (V ,E) be a possibly directed graph, S,T ⊆ V with
S ∩ T = ∅. We can find a set X ⊆ V of size O(|S| · |T | · cut(S,T )
such that for any A ⊆ S,B ⊆ T , X contains a minimum (A,B)-cut.

Covering multiway cuts
Let G = (V ,E) be an undirected graph, T ⊆ V a set of terminals,
and s a constant. We can find a set X ⊆ V of size O(|T |s+1)
such that for every partition P of T into at most s sets, X contains
a multiway cut of P.
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Consequences, kernels

The following problems have polynomial kernels using these
methods:

Graph bipartization problems (edge/vertex deletion)
ALMOST 2-SAT / VERTEX COVER ABOVE MATCHING

MULTIWAY CUT WITH DELETABLE TERMINALS

MULTIWAY CUT, MULTICUT with O(1) terminals
GROUP FEEDBACK VERTEX SET, fixed group
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Conclusion

Matroid theory and the representative sets lemma have powerful
uses in kernelization (we saw only two).

Open questions:
1. Deterministic results (currently: failure risk O(2−n))
2. Non-magic (graph specific) proofs of the results
3. Open kernelization questions:

– MULTIWAY CUT: edge deletion, bounded degree terminals,
general setting, ABOVE PATH PACKING

– MULTICUT for parameter (cut set)+(requests)
– DIRECTED FEEDBACK VERTEX SET
– GROUP FEEDBACK problems more generally
– UNIQUE LABEL COVER kernel cases?
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