

Matroid uses in kernelization

Magnus Wahlström Joint work with Stefan Kratsch

Max Planck Institute for Informatics

June 14, 2012

Matroid uses in kernelization

Magnus Wahlström Joint work with Stefan Kratsch

Max Planck Institute for Informatics

June 14, 2012

Matroids

A matroid $M = (V, \mathcal{I}), \mathcal{I} \subseteq 2^V$, is an independence system with independent sets \mathcal{I} satisfying:

- 1. The empty set is independent
- 2. A subset of an independent set is independent
- 3. Augmentation property: If *A*, *B* are independent and |B| > |A|, then there is some $b \in B A$ such that A + b is independent

Rank r(X): Size of largest independent subset of X

Examples

Canonical examples:

- 1. Graphic matroids: Let G = (V, E) be a graph.
 - M = (E, I), I contains cycle-free edge sets
 - Rank: number of vertices minus number of components
- 2. Linear matroids $M = (V, \mathcal{I})$:
 - V is a collection of vectors in \mathbb{F}^d for some field \mathbb{F}
 - Independence concept is linear independence
 - Rank: dimension

Representable matroid: Can be given as set of vectors.

Examples

Canonical examples:

- 1. Graphic matroids: Let G = (V, E) be a graph.
 - M = (E, I), I contains cycle-free edge sets
 - Rank: number of vertices minus number of components
- 2. Linear matroids $M = (V, \mathcal{I})$:
 - V is a collection of vectors in \mathbb{F}^d for some field \mathbb{F}
 - Independence concept is linear independence
 - Rank: dimension

Representable matroid: Can be given as set of vectors.

Graph cut matroids: Gammoids

Let G = (V, E) be a graph (possibly directed). Say that $T \subseteq V$ is linked to *S* if there are |T| vertex-disjoint paths from *S* to *T* (with distinct endpoints).

The gammoid (G, S) defined by *G* and *S* is $M = (V, \mathcal{I})$ where:

- I contains all sets linked to S
- The rank r(X) equals the size of an (S, X)-cut

Gammoids are representable.

Matroids in kernelization

Matroid theory was integral to the following kernelization results:

- ODD CYCLE TRANSVERSAL polynomial compression (SODA 2012)
- ALMOST 2-SAT polynomial kernel
- MULTIWAY CUT WITH DELETABLE TERMINALS
- Restrictions of cut problems: MULTIWAY CUT with s terminals, MULTICUT with s requests, GROUP FEEDBACK VERTEX SET with fixed group

Covering terminal min-cuts

Further result: Cut-covering sets

Covering (A, B)-cuts

Let G = (V, E), $S, T \subseteq V, S \cap T = \emptyset$. We can find a set $X \subseteq V$ of polynomial size such that for any $A \subseteq S$ and $B \subseteq T$, X contains a minimum (A, B)-cut.

Three uses of matroids

Matroids have seen three types of use in kernelization:

- 1. Encoding information succinctly
- 2. Sunflower-type constraints reductions
- 3. Irrelevant vertex rules

Three uses of matroids

Matroids have seen three types of use in kernelization:

- 1. Encoding information succinctly
 - ODD CYCLE TRANSVERSAL
- 2. Sunflower-type constraints reductions
 - ALMOST 2-SAT
- 3. Irrelevant vertex rules
 - s-MULTIWAY CUT, cut-covering sets applications

Matroids for encoding

■ Matroid *M* = (*V*, *I*), represented by matrix *A*: *r*(*M*) · |*V*| · ℓ space, bitlength ℓ

One known use: Gammoids encoding terminal cut functions

- Input: Graph G = (V, E), terminals $T \subset V$, need to know size of all min-cuts through T
- $\mathcal{O}(|T|) \times \mathcal{O}(|T|)$ matrix, $\ell = \mathcal{O}(|T|)$ (Kratsch, W., SODA 2012)
- Now known: Also encodable as graph with $\mathcal{O}(|\mathcal{T}|^3)$ vertices.

Matroids for encoding

- Matroid *M* = (*V*, *I*), represented by matrix *A*: *r*(*M*) · |*V*| · ℓ space, bitlength ℓ
- One known use: Gammoids encoding terminal cut functions
 - Input: Graph G = (V, E), terminals $T \subset V$, need to know size of all min-cuts through T
 - $\mathcal{O}(|T|) \times \mathcal{O}(|T|)$ matrix, $\ell = \mathcal{O}(|T|)$ (Kratsch, W., SODA 2012)
 - Now known: Also encodable as graph with $\mathcal{O}(|\mathcal{T}|^3)$ vertices.

Matroids for encoding

- Matroid *M* = (*V*, *I*), represented by matrix *A*: *r*(*M*) · |*V*| · ℓ space, bitlength ℓ
- One known use: Gammoids encoding terminal cut functions
 - Input: Graph G = (V, E), terminals $T \subset V$, need to know size of all min-cuts through T
 - $\mathcal{O}(|T|) \times \mathcal{O}(|T|)$ matrix, $\ell = \mathcal{O}(|T|)$ (Kratsch, W., SODA 2012)
 - Now known: Also encodable as graph with $\mathcal{O}(|\mathcal{T}|^3)$ vertices.

For advanced applications, we need the following notions.

Let $M = (V, \mathcal{I})$ be a matroid, $X \subseteq V$.

- Let $t = \{t_1, \ldots, t_s\} \subset V$. We say that t extends X if $X \cap t = \emptyset$ and $X \cup t$ is independent (i.e., $r(X \cup t) = |X| + |t|$).
- Let $T \subseteq \binom{V}{s}$. We say that T extends X if t extends X, $t \in T$.
- A set *T*^{*} ⊆ *T* represents *T* in *M* if, for any *X*, *T* extends *X* if and only if *T*^{*} extends *X*.

Representative sets (Marx (2006) using Lovász (1977))

Let $M = (V, \mathcal{I})$ be a linear matroid and $T \subseteq {\binom{V}{s}}$. We can find, in polynomial time, a representative set $T^* \subseteq T$ for T in M such that $|T^*| = \mathcal{O}(r(M)^s)$.

For advanced applications, we need the following notions.

Let $M = (V, \mathcal{I})$ be a matroid, $X \subseteq V$.

- Let $t = \{t_1, \ldots, t_s\} \subset V$. We say that t extends X if $X \cap t = \emptyset$ and $X \cup t$ is independent (i.e., $r(X \cup t) = |X| + |t|$).
- Let $T \subseteq \binom{V}{s}$. We say that T extends X if t extends X, $t \in T$.
- A set *T*^{*} ⊆ *T* represents *T* in *M* if, for any *X*, *T* extends *X* if and only if *T*^{*} extends *X*.

Representative sets (Marx (2006) using Lovász (1977))

Let $M = (V, \mathcal{I})$ be a linear matroid and $T \subseteq {\binom{V}{s}}$. We can find, in polynomial time, a representative set $T^* \subseteq T$ for T in M such that $|T^*| = \mathcal{O}(r(M)^s)$.

For advanced applications, we need the following notions.

Let
$$M = (V, \mathcal{I})$$
 be a matroid, $X \subseteq V$.

- Let $t = \{t_1, \ldots, t_s\} \subset V$. We say that t extends X if $X \cap t = \emptyset$ and $X \cup t$ is independent (i.e., $r(X \cup t) = |X| + |t|$).
- Let $T \subseteq \binom{V}{s}$. We say that T extends X if t extends X, $t \in T$.
- A set *T*^{*} ⊆ *T* represents *T* in *M* if, for any *X*, *T* extends *X* if and only if *T*^{*} extends *X*.

Representative sets (Marx (2006) using Lovász (1977))

Let $M = (V, \mathcal{I})$ be a linear matroid and $T \subseteq {\binom{V}{s}}$. We can find, in polynomial time, a representative set $T^* \subseteq T$ for T in M such that $|T^*| = \mathcal{O}(r(M)^s)$.

For advanced applications, we need the following notions.

Let
$$M = (V, \mathcal{I})$$
 be a matroid, $X \subseteq V$.

- Let $t = \{t_1, \ldots, t_s\} \subset V$. We say that t extends X if $X \cap t = \emptyset$ and $X \cup t$ is independent (i.e., $r(X \cup t) = |X| + |t|$).
- Let $T \subseteq \binom{V}{s}$. We say that T extends X if t extends X, $t \in T$.
- A set *T*^{*} ⊆ *T* represents *T* in *M* if, for any *X*, *T* extends *X* if and only if *T*^{*} extends *X*.

Representative sets (Marx (2006) using Lovász (1977))

Let $M = (V, \mathcal{I})$ be a linear matroid and $T \subseteq \binom{V}{s}$. We can find, in polynomial time, a representative set $T^* \subseteq T$ for T in M such that $|T^*| = \mathcal{O}(r(M)^s)$.

Application: Vertex Cover kernel

Recall the most classical VERTEX COVER kernel. VERTEX COVER: Given G = (V, E) and k, does G have a vertex cover of size at most k?

Buss' vertex cover kernel d(v) > k: must include v d(v) = 0: discard v |E(G)| > k²: reject instance

Size $\mathcal{O}(k^2)$ kernel.

Application: Vertex Cover kernel

Recall the most classical VERTEX COVER kernel. VERTEX COVER: Given G = (V, E) and k, does G have a vertex cover of size at most k?

Buss' vertex cover kernel d(v) > k: must include v d(v) = 0: discard v |E(G)| > k²: reject instance

Size $\mathcal{O}(k^2)$ kernel.

Application: Vertex Cover kernel

Recall the most classical VERTEX COVER kernel. VERTEX COVER: Given G = (V, E) and k, does G have a vertex cover of size at most k?

Buss' vertex cover kernel d(v) > k: must include v d(v) = 0: discard v $|E(G)| > k^2$: reject instance

Size $\mathcal{O}(k^2)$ kernel.

- Matroid $M = (V, \binom{V}{\langle k+2})$ (representable)
- Tuple set $E \subseteq \binom{V}{2}$
- "Query set" $X \subseteq V, |X| \le k$
- $e = \{u, v\} \in E$: *e* extends *X* if and only if *X* misses *e* ($u, v \notin X$)
- *E* extends *X* if and only if *X* is not a vertex cover
- $E^* \subseteq E$ representative set: E^* reveals every non-vertex cover

- Matroid $M = (V, \binom{V}{\leq k+2})$ (representable)
- Tuple set $E \subseteq \binom{V}{2}$
- "Query set" $X \subseteq V$, $|X| \le k$
- $e = \{u, v\} \in E$: *e* extends *X* if and only if *X* misses *e* ($u, v \notin X$)
- *E* extends *X* if and only if *X* is not a vertex cover
- $E^* \subseteq E$ representative set: E^* reveals every non-vertex cover

- Matroid $M = (V, \binom{V}{\leq k+2})$ (representable)
- Tuple set $E \subseteq \binom{V}{2}$
- "Query set" $X \subseteq V$, $|X| \leq k$
- $e = \{u, v\} \in E$: *e* extends *X* if and only if *X* misses *e* ($u, v \notin X$)
- E extends X if and only if X is not a vertex cover
- $E^* \subseteq E$ representative set: E^* reveals every non-vertex cover

- Matroid $M = (V, \binom{V}{\leq k+2})$ (representable)
- Tuple set $E \subseteq \binom{V}{2}$
- "Query set" $X \subseteq V$, $|X| \leq k$
- $e = \{u, v\} \in E$: *e* extends *X* if and only if *X* misses *e* $(u, v \notin X)$
- E extends X if and only if X is not a vertex cover
- $E^* \subseteq E$ representative set: E^* reveals every non-vertex cover

- Matroid $M = (V, \binom{V}{\leq k+2})$ (representable)
- Tuple set $E \subseteq \binom{V}{2}$
- "Query set" $X \subseteq V$, $|X| \leq k$
- $e = \{u, v\} \in E$: *e* extends *X* if and only if *X* misses *e* ($u, v \notin X$)
- E extends X if and only if X is not a vertex cover
- $E^* \subseteq E$ representative set: E^* reveals every non-vertex cover

- Matroid $M = (V, \binom{V}{\leq k+2})$ (representable)
- Tuple set $E \subseteq \binom{V}{2}$
- "Query set" $X \subseteq V$, $|X| \leq k$
- $e = \{u, v\} \in E$: *e* extends *X* if and only if *X* misses *e* ($u, v \notin X$)
- E extends X if and only if X is not a vertex cover
- $E^* \subseteq E$ representative set: E^* reveals every non-vertex cover

- Matroid $M = (V, \binom{V}{\leq k+2})$ (representable)
- Tuple set $E \subseteq \binom{V}{2}$
- "Query set" $X \subseteq V$, $|X| \leq k$
- $e = \{u, v\} \in E$: *e* extends *X* if and only if *X* misses *e* ($u, v \notin X$)
- E extends X if and only if X is not a vertex cover
- $E^* \subseteq E$ representative set: E^* reveals every non-vertex cover

- Matroid $M = (V, \binom{V}{\leq k+2})$ (representable)
- Tuple set $E \subseteq \binom{V}{2}$

• "Query set"
$$X \subseteq V$$
, $|X| \leq k$

- $e = \{u, v\} \in E$: *e* extends *X* if and only if *X* misses *e* ($u, v \notin X$)
- E extends X if and only if X is not a vertex cover
- $E^* \subseteq E$ representative set: E^* reveals every non-vertex cover

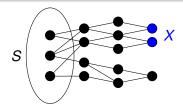
$$|E^*| = \mathcal{O}(r(M)^s) = \mathcal{O}(k^2).$$

Conclusions

A gammoid lemma

For a graph G = (V, E), sets $A, B \subseteq V$: Let C(A, B) be the minimum (A, B)-vertex cut closest to A (may intersect A, B).

Lemma

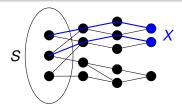


Conclusions

A gammoid lemma

For a graph G = (V, E), sets $A, B \subseteq V$: Let C(A, B) be the minimum (A, B)-vertex cut closest to A (may intersect A, B).

Lemma

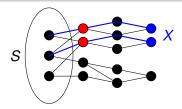


Conclusions

A gammoid lemma

For a graph G = (V, E), sets $A, B \subseteq V$: Let C(A, B) be the minimum (A, B)-vertex cut closest to A (may intersect A, B).

Lemma

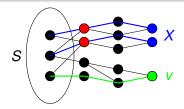


Conclusions

A gammoid lemma

For a graph G = (V, E), sets $A, B \subseteq V$: Let C(A, B) be the minimum (A, B)-vertex cut closest to A (may intersect A, B).

Lemma



Conclusions

A gammoid lemma

For a graph G = (V, E), sets $A, B \subseteq V$: Let C(A, B) be the minimum (A, B)-vertex cut closest to A (may intersect A, B).

Lemma

Let (G = (V, E), S) define a gammoid, $X \subseteq V$ a set linked to S. Then for any $v \in V$, v extends X if and only if S reaches v in G - C(S, X).

Proof. (1) v extends X: Path must avoid closest cut.

Conclusions

A gammoid lemma

For a graph G = (V, E), sets $A, B \subseteq V$: Let C(A, B) be the minimum (A, B)-vertex cut closest to A (may intersect A, B).

Lemma

Let (G = (V, E), S) define a gammoid, $X \subseteq V$ a set linked to S. Then for any $v \in V$, v extends X if and only if S reaches v in G - C(S, X).

Proof. (1) v extends X: Path must avoid closest cut.

(2) X + v dependent: (S, X + v)-cut, size |X|, cuts v from S. This is a min-cut, thus the closest cut also cuts v from S.

The Digraph Pair Cut problem

DIGRAPH PAIR CUT

Input: Digraph G = (V, E), source $s \in V$, integer k, set $P \subseteq \binom{V}{2}$. **Parameter:** k**Question:** Find k vertices X such that no pair in P is reachable from s in G - X.

Pair $\{u, v\}$ reachable: u, v each reachable from s.

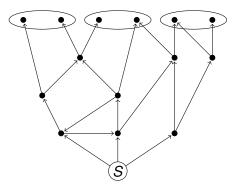
Will show: can reduce to $\mathcal{O}(k^2)$ pairs.

Digraph Pair Cut

Cut-covering sets

Conclusions

Digraph Pair Cut example

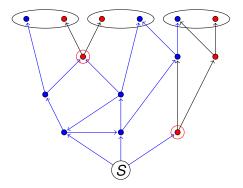


Digraph Pair Cut

Cut-covering sets

Conclusions

Digraph Pair Cut example

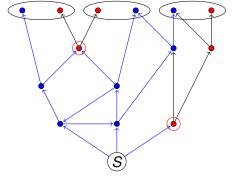


Digraph Pair Cut

Cut-covering sets

Conclusions

Digraph Pair Cut example



Observation: Closest cuts C(S, X) suffice.

Observation: Closest cuts C(S, X) suffice.

1. Let S = k + 1 copies of s; $T = \emptyset$.

2. Recursively try:

- **2.1** Let X = C(S, T) (first round $X = \emptyset$).
- **2.2** If |X| > k, reject.
- **2.3** If X is a solution, return it.
- **2.4** Find pair $\{u, v\} \in P$ reachable in G X, recurse with T = T + u and T = T + v.

Observation: Closest cuts C(S, X) suffice.

1. Let S = k + 1 copies of s; $T = \emptyset$.

2. Recursively try:

- **2.1** Let X = C(S, T) (first round $X = \emptyset$).
- **2.2** If |X| > k, reject.
- **2.3** If X is a solution, return it.
- **2.4** Find pair $\{u, v\} \in P$ reachable in G X, recurse with T = T + u and T = T + v.

Observation: Closest cuts C(S, X) suffice.

- 1. Let S = k + 1 copies of s; $T = \emptyset$.
- 2. Recursively try:
 - 2.1 Let X = C(S, T) (first round $X = \emptyset$).
 - **2.2** If |X| > k, reject.
 - **2.3** If X is a solution, return it.
 - **2.4** Find pair $\{u, v\} \in P$ reachable in G X, recurse with T = T + u and T = T + v.

Observation: Closest cuts C(S, X) suffice.

- 1. Let S = k + 1 copies of s; $T = \emptyset$.
- 2. Recursively try:
 - 2.1 Let X = C(S, T) (first round $X = \emptyset$).
 - 2.2 If |X| > k, reject.

2.3 If *X* is a solution, return it.

```
2.4 Find pair \{u, v\} \in P reachable in G - X, recurse with T = T + u and T = T + v.
```


Observation: Closest cuts C(S, X) suffice.

1. Let S = k + 1 copies of s; $T = \emptyset$.

2. Recursively try:

- 2.1 Let X = C(S, T) (first round $X = \emptyset$).
- 2.2 If |X| > k, reject.
- 2.3 If X is a solution, return it.

2.4 Find pair $\{u, v\} \in P$ reachable in G - X, recurse with T = T + u and T = T + v.

Observation: Closest cuts C(S, X) suffice.

- 1. Let S = k + 1 copies of s; $T = \emptyset$.
- 2. Recursively try:
 - 2.1 Let X = C(S, T) (first round $X = \emptyset$).
 - 2.2 If |X| > k, reject.
 - 2.3 If X is a solution, return it.
 - 2.4 Find pair $\{u, v\} \in P$ reachable in G X, recurse with T = T + uand T = T + v.

Observation: Closest cuts C(S, X) suffice.

- 1. Let S = k + 1 copies of s; $T = \emptyset$.
- 2. Recursively try:
 - 2.1 Let X = C(S, T) (first round $X = \emptyset$).
 - 2.2 If |X| > k, reject.
 - 2.3 If X is a solution, return it.
 - 2.4 Find pair $\{u, v\} \in P$ reachable in G X, recurse with T = T + uand T = T + v.

Testing a proposed solution

Consider a set $X \subset V$, $|X| \leq k$.

- C := C(S, X) is a solution: we are happy.
- Otherwise, pair $\{u, v\} \in P$ reachable in G C.
- Need to test: S reaches u and v in G C.

Recall: Lemma

Given (G, S): v extends X iff S reaches v in G - C(S, X).

To test: (u extends X) and (v extends X).

Testing a proposed solution

Consider a set $X \subset V$, $|X| \leq k$.

- C := C(S, X) is a solution: we are happy.
- Otherwise, pair $\{u, v\} \in P$ reachable in G C.
- Need to test: S reaches u and v in G C.

Recall: Lemma

Given (G, S): *v* extends *X* iff *S* reaches *v* in G - C(S, X).

To test: (u extends X) and (v extends X).

Testing a proposed solution

Consider a set $X \subset V$, $|X| \leq k$.

- C := C(S, X) is a solution: we are happy.
- Otherwise, pair $\{u, v\} \in P$ reachable in G C.
- Need to test: S reaches u and v in G C.

Recall: Lemma

Given (G, S): *v* extends *X* iff *S* reaches *v* in G - C(S, X).

To test: (u extends X) and (v extends X).

Testing non-solutions

To test: (u extends X) and (v extends X).

- 1. Let $M = (G_1, S_1) + (G_2, S_2)$ (disjoint identical copies of (G, S))
- 2. Let $T = \{\{u_1, v_2\} : \{u, v\} \in P\}.$
- 3. Let $X' = X_1 + X_2$ (copies of X in G_1 and G_2)

4. $\{u_1, v_2\} \in T$ extends X' iff u and v each extends X.

Representative set $T^* \subseteq T$ sufficient testing set, $|T^*| = O(k^2)$.

Testing non-solutions

To test: (u extends X) and (v extends X).

- 1. Let $M = (G_1, S_1) + (G_2, S_2)$ (disjoint identical copies of (G, S))
- 2. Let $T = \{\{u_1, v_2\} : \{u, v\} \in P\}.$
- 3. Let $X' = X_1 + X_2$ (copies of X in G_1 and G_2)
- 4. $\{u_1, v_2\} \in T$ extends X' iff u and v each extends X.

Representative set $T^* \subseteq T$ sufficient testing set, $|T^*| = O(k^2)$.

Testing non-solutions

To test: (u extends X) and (v extends X).

1. Let $M = (G_1, S_1) + (G_2, S_2)$ (disjoint identical copies of (G, S))

2. Let
$$T = \{\{u_1, v_2\} : \{u, v\} \in P\}.$$

- 3. Let $X' = X_1 + X_2$ (copies of X in G_1 and G_2)
- 4. $\{u_1, v_2\} \in T$ extends X' iff u and v each extends X.

Representative set $T^* \subseteq T$ sufficient testing set, $|T^*| = O(k^2)$.

Conclusions

Testing set \Rightarrow polynomial kernel

Input: Instance (G, s, k, P) of DIGRAPH PAIR CUT. Have: Representative pairs $P^* \subseteq P$.

Pairs in P^* are enough to dry-run the algorithm.

- **1.** Initially $T = \emptyset$
- 2. Find pair $\{u, v\} \in P$ reachable in G C(S, T) (matroid test)
- 3. Recurse T = T + u and T = T + v
- 4. Solution size is now |T|

Testing set \Rightarrow polynomial kernel

Input: Instance (G, s, k, P) of DIGRAPH PAIR CUT. Have: Representative pairs $P^* \subseteq P$.

Pairs in P^* are enough to dry-run the algorithm.

- 1. Initially $T = \emptyset$
- 2. Find pair $\{u, v\} \in P$ reachable in G C(S, T) (matroid test)
- 3. Recurse T = T + u and T = T + v
- 4. Solution size is now |T|

Digraph Pair Cut kernelization

Input: Instance (G, s, k, P) of DIGRAPH PAIR CUT.

- 1. Find representative pairs $P^* \subseteq P$ (as seen).
- 2. Let $T = \bigcup P^*$ be all vertices in P^* $(|T| = O(k^2))$.
- 3. Encode sizes of (S, X)-vertex cuts, $X \subseteq T$, in small space.

Matrix encoding: $\mathcal{O}(|S| \cdot |T| \cdot (|S| \log |T|)) = \tilde{\mathcal{O}}(k^4)$ space. Later: graph with $\mathcal{O}(|S| \cdot |T| \cdot |S|) = \mathcal{O}(k^4)$ vertices.

Digraph Pair Cut kernelization

Input: Instance (G, s, k, P) of DIGRAPH PAIR CUT.

- 1. Find representative pairs $P^* \subseteq P$ (as seen).
- 2. Let $T = \bigcup P^*$ be all vertices in P^* $(|T| = O(k^2))$.
- 3. Encode sizes of (S, X)-vertex cuts, $X \subseteq T$, in small space.

Matrix encoding: $\mathcal{O}(|S| \cdot |T| \cdot (|S| \log |T|)) = \tilde{\mathcal{O}}(k^4)$ space.

Later: graph with $\mathcal{O}(|S| \cdot |T| \cdot |S|) = \mathcal{O}(k^4)$ vertices.

Digraph Pair Cut kernelization

Input: Instance (G, s, k, P) of DIGRAPH PAIR CUT.

- 1. Find representative pairs $P^* \subseteq P$ (as seen).
- 2. Let $T = \bigcup P^*$ be all vertices in P^* $(|T| = O(k^2))$.
- 3. Encode sizes of (S, X)-vertex cuts, $X \subseteq T$, in small space.

Matrix encoding: $\mathcal{O}(|S| \cdot |T| \cdot (|S| \log |T|)) = \tilde{\mathcal{O}}(k^4)$ space.

Later: graph with $\mathcal{O}(|S| \cdot |T| \cdot |S|) = \mathcal{O}(k^4)$ vertices.

Digraph Pair Cut, wrap-up

- Constraints reduction: Find O(k²) sufficient constraints (P*)
- Encoding terminal cuts from S to $\bigcup P^*$ to encode the instance
- Cut-covering sets (next) for a "proper" kernel

Not shown:

- Compression Almost 2-SAT(k) \Rightarrow Digraph Pair Cut(2k)
- Gives ALMOST 2-SAT polynomial kernel

Digraph Pair Cut, wrap-up

- Constraints reduction: Find O(k²) sufficient constraints (P*)
- Encoding terminal cuts from S to $\bigcup P^*$ to encode the instance
- Cut-covering sets (next) for a "proper" kernel

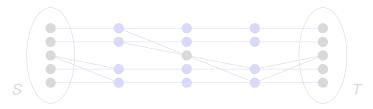
Not shown:

- Compression Almost 2-SAT(k) \Rightarrow Digraph Pair Cut(2k)
- Gives ALMOST 2-SAT polynomial kernel

Our goal: Find a cut-covering set

Covering (A, B)-cuts

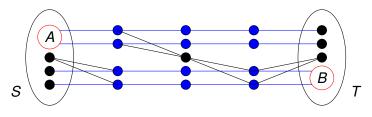
Let G = (V, E), $S, T \subseteq V, S \cap T = \emptyset$. We can find a set $X \subseteq V$ of polynomial size such that for any $A \subseteq S, B \subseteq T, X$ contains a minimum (A, B)-cut.



Our goal: Find a cut-covering set

Covering (A, B)-cuts

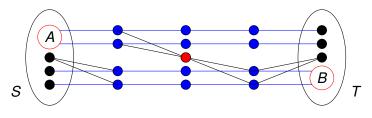
Let G = (V, E), $S, T \subseteq V, S \cap T = \emptyset$. We can find a set $X \subseteq V$ of polynomial size such that for any $A \subseteq S$, $B \subseteq T$, X contains a minimum (A, B)-cut.



Our goal: Find a cut-covering set

Covering (A, B)-cuts

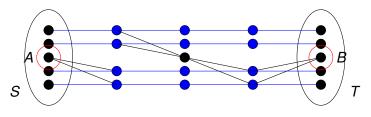
Let G = (V, E), $S, T \subseteq V, S \cap T = \emptyset$. We can find a set $X \subseteq V$ of polynomial size such that for any $A \subseteq S$, $B \subseteq T$, X contains a minimum (A, B)-cut.



Our goal: Find a cut-covering set

Covering (A, B)-cuts

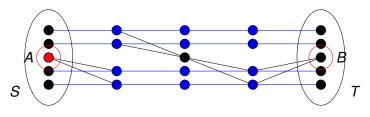
Let G = (V, E), $S, T \subseteq V, S \cap T = \emptyset$. We can find a set $X \subseteq V$ of polynomial size such that for any $A \subseteq S$, $B \subseteq T$, X contains a minimum (A, B)-cut.



Our goal: Find a cut-covering set

Covering (A, B)-cuts

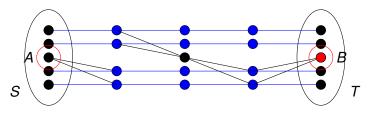
Let G = (V, E), $S, T \subseteq V, S \cap T = \emptyset$. We can find a set $X \subseteq V$ of polynomial size such that for any $A \subseteq S$, $B \subseteq T$, X contains a minimum (A, B)-cut.



Our goal: Find a cut-covering set

Covering (A, B)-cuts

Let G = (V, E), $S, T \subseteq V, S \cap T = \emptyset$. We can find a set $X \subseteq V$ of polynomial size such that for any $A \subseteq S$, $B \subseteq T$, X contains a minimum (A, B)-cut.



Irrelevant vertices

Let G = (V, E), S, and T be given.

- Let $A \subseteq S$, $B \subseteq T$. A vertex $v \in V$ is essential for (A, B) if v is contained in every minimum (A, B)-cut.
- A vertex v ∈ V is irrelevant if it is not essential for any (A, B) and not contained in S or T.

If we can find an irrelevant vertex, we can reduce the problem. Plan:

- 1. Characterize (A, B)-essential vertices
- 2. Find them with representative sets query
- 3. Construct query to find all essential vertices

Irrelevant vertices

Let G = (V, E), S, and T be given.

- Let $A \subseteq S$, $B \subseteq T$. A vertex $v \in V$ is essential for (A, B) if v is contained in every minimum (A, B)-cut.
- A vertex v ∈ V is irrelevant if it is not essential for any (A, B) and not contained in S or T.

If we can find an irrelevant vertex, we can reduce the problem. Plan:

- 1. Characterize (A, B)-essential vertices
- 2. Find them with representative sets query
- 3. Construct query to find all essential vertices

Characterizing essential vertices

For any vertex v, let v' be a sink copy: a copy of v with edges oriented inwards.

• $v \in X$, X + v' linked to $S \Leftrightarrow$ vertex-disjoint paths from S to X, with two paths to v

We will show the following.

Let G = (V, E), $A, B \subseteq V$ be given. Let C be a minimum (A, B)-cut. A vertex $v \in V$ is essential for (A, B) if and only if C + v' is linked to A and C + v' is linked to B.

Characterizing essential vertices

For any vertex v, let v' be a sink copy: a copy of v with edges oriented inwards.

• $v \in X$, X + v' linked to $S \Leftrightarrow$ vertex-disjoint paths from S to X, with two paths to v

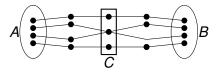
We will show the following.

Let G = (V, E), $A, B \subseteq V$ be given. Let C be a minimum (A, B)-cut. A vertex $v \in V$ is essential for (A, B) if and only if C + v' is linked to A and C + v' is linked to B.

Characterizing essential vertices

For any vertex v, let v' be a sink copy: a copy of v with edges oriented inwards. We will show the following.

Let G = (V, E), $A, B \subseteq V$ be given. Let *C* be a minimum (A, B)-cut. A vertex $v \in V$ is essential for (A, B) if and only if C + v' is linked to *A* and C + v' is linked to *B*.



Proof

 $G = (V, E), A, B \subseteq V$, minimum cut C as before. To prove:

Vertex v essential for (A, B) iff C + v' is linked to A and to B.

- 1. A vertex $v \in V$ is (A, B)-essential if and only if $v \in C(A, C) \cap C(B, C)$.
 - Almost by definition
- **2.** ...if and only if C + v' is linked to A and to B
 - C + v' linked to A iff v' reachable from A in G C(A, C)
 - Either $v \in C(A, C)$, or C(A, C) cuts v from B
 - -C + v' linked to A and to $B \Leftrightarrow v \in C(A, C) \cap C(B, C)$.

Proof

 $G = (V, E), A, B \subseteq V$, minimum cut C as before. To prove:

Vertex v essential for (A, B) iff C + v' is linked to A and to B.

- 1. A vertex $v \in V$ is (A, B)-essential if and only if $v \in C(A, C) \cap C(B, C)$.
 - Almost by definition
- 2. ...if and only if C + v' is linked to A and to B
 - -C + v' linked to A iff v' reachable from A in G C(A, C)
 - Either $v \in C(A, C)$, or C(A, C) cuts v from B
 - -C + v' linked to A and to $B \Leftrightarrow v \in \mathcal{C}(A, C) \cap \mathcal{C}(B, C)$.

Proof

 $G = (V, E), A, B \subseteq V$, minimum cut C as before. To prove:

Vertex v essential for (A, B) iff C + v' is linked to A and to B.

- 1. A vertex $v \in V$ is (A, B)-essential if and only if $v \in C(A, C) \cap C(B, C)$.
 - Almost by definition
- 2. ...if and only if C + v' is linked to A and to B
 - C + v' linked to A iff v' reachable from A in G C(A, C)
 - Either $v \in C(A, C)$, or C(A, C) cuts v from B
 - -C + v' linked to A and to $B \Leftrightarrow v \in C(A, C) \cap C(B, C)$.

Proof

 $G = (V, E), A, B \subseteq V$, minimum cut C as before. To prove:

Vertex v essential for (A, B) iff C + v' is linked to A and to B.

- 1. A vertex $v \in V$ is (A, B)-essential if and only if $v \in C(A, C) \cap C(B, C)$.
 - Almost by definition
- 2. ...if and only if C + v' is linked to A and to B
 - -C + v' linked to A iff v' reachable from A in G C(A, C)
 - Either $v \in C(A, C)$, or C(A, C) cuts v from B
 - C + v' linked to A and to $B \Leftrightarrow v \in \mathcal{C}(A, C) \cap \mathcal{C}(B, C)$.

Representative sets query

We have:

Vertex v essential for (A, B) iff C + v' is linked to A and to B.

Tweak it:

Vertex v essential for (A, B) iff v' extends C in (G, A) and in (G, B)

Previous trick:

Vertex v essential for (A, B) iff v' + v' extends C + C in (G, A) + (G, B)

Representative sets query

We have:

Vertex v essential for (A, B) iff C + v' is linked to A and to B.

Tweak it:

Vertex v essential for (A, B) iff v' extends C in (G, A) and in (G, B)

Previous trick:

```
Vertex v essential for (A, B) iff v' + v' extends C + C in (G, A) + (G, B)
```


Finding all essential vertices

- 1. M = (G', S) + (G', T), with sink copies added to G
- 2. $P = \{(v'_S, v'_T) : v \in V\}$ (sink copies of v in (G, S) and (G, T))
- 3. Representative set *P*^{*} contains one essential vertex for each pair (*A*, *B*)
- 4. Take r = cut(S, T) disjoint representative sets $(r \le |S|, |T|)$ to cover every essential vertex.

Finding all essential vertices

- 1. M = (G', S) + (G', T), with sink copies added to G
- 2. $P = \{(v'_S, v'_T) : v \in V\}$ (sink copies of v in (G, S) and (G, T))
- 3. Representative set *P*^{*} contains one essential vertex for each pair (*A*, *B*)
- 4. Take r = cut(S, T) disjoint representative sets $(r \le |S|, |T|)$ to cover every essential vertex.

Finding all essential vertices

- 1. M = (G', S) + (G', T), with sink copies added to G
- 2. $P = \{(v'_S, v'_T) : v \in V\}$ (sink copies of v in (G, S) and (G, T))
- 3. Representative set *P*^{*} contains one essential vertex for each pair (*A*, *B*)
- 4. Take r = cut(S, T) disjoint representative sets $(r \le |S|, |T|)$ to cover every essential vertex.

Finding all essential vertices

- 1. M = (G', S) + (G', T), with sink copies added to G
- 2. $P = \{(v'_S, v'_T) : v \in V\}$ (sink copies of v in (G, S) and (G, T))
- 3. Representative set P^* contains one essential vertex for each pair (A, B)
- Take r = cut(S, T) disjoint representative sets (r ≤ |S|, |T|) to cover every essential vertex.

Finding all essential vertices

- 1. M = (G', S) + (G', T), with sink copies added to G
- 2. $P = \{(v'_S, v'_T) : v \in V\}$ (sink copies of v in (G, S) and (G, T))
- 3. Representative set *P*^{*} contains one essential vertex for each pair (*A*, *B*)
- 4. Take r = cut(S, T) disjoint representative sets $(r \le |S|, |T|)$ to cover every essential vertex.

Finishing the reduction

Have: $\mathcal{O}(|S| \cdot |T| \cdot \operatorname{cut}(S, T))$ potentially essential vertices.

Let *v* be an irrelevant vertex. We may make *v* undeletable:

- Complete N(v) into a clique.
- Delete v from the graph.

This does not change the size of any minimum (A, B)-cut.

Let G' be the result of iterating the above until no vertex is known to be irrelevant. Then X = V(G') is our cut-covering set for the original graph G.

Finishing the reduction

Have: $\mathcal{O}(|S| \cdot |T| \cdot \operatorname{cut}(S, T))$ potentially essential vertices.

Let *v* be an irrelevant vertex. We may make *v* undeletable:

- Complete N(v) into a clique.
- Delete v from the graph.

This does not change the size of any minimum (A, B)-cut.

Let G' be the result of iterating the above until no vertex is known to be irrelevant. Then X = V(G') is our cut-covering set for the original graph G.

Consequences, covering min-cuts

Covering (A, B)-cuts

Let G = (V, E) be a possibly directed graph, $S, T \subseteq V$ with $S \cap T = \emptyset$. We can find a set $X \subseteq V$ of size $\mathcal{O}(|S| \cdot |T| \cdot \operatorname{cut}(S, T))$ such that for any $A \subseteq S, B \subseteq T$, X contains a minimum (A, B)-cut.

Covering multiway cuts

Let G = (V, E) be an undirected graph, $T \subseteq V$ a set of terminals, and *s* a constant. We can find a set $X \subseteq V$ of size $\mathcal{O}(|T|^{s+1})$ such that for every partition *P* of *T* into at most *s* sets, *X* contains a multiway cut of *P*.

Consequences, kernels

The following problems have polynomial kernels using these methods:

- Graph bipartization problems (edge/vertex deletion)
- ALMOST 2-SAT / VERTEX COVER ABOVE MATCHING
- MULTIWAY CUT WITH DELETABLE TERMINALS
- MULTIWAY CUT, MULTICUT with O(1) terminals
- GROUP FEEDBACK VERTEX SET, fixed group

Conclusion

Matroid theory and the representative sets lemma have powerful uses in kernelization (we saw only two).

Open questions:

- 1. Deterministic results (currently: failure risk $\mathcal{O}(2^{-n})$)
- 2. Non-magic (graph specific) proofs of the results
- 3. Open kernelization questions:
 - MULTIWAY CUT: edge deletion, bounded degree terminals, general setting, ABOVE PATH PACKING
 - MULTICUT for parameter (cut set)+(requests)
 - Directed Feedback Vertex Set
 - GROUP FEEDBACK problems more generally
 - UNIQUE LABEL COVER kernel cases?

Conclusion

Matroid theory and the representative sets lemma have powerful uses in kernelization (we saw only two).

Open questions:

- 1. Deterministic results (currently: failure risk $O(2^{-n})$)
- 2. Non-magic (graph specific) proofs of the results
- 3. Open kernelization questions:
 - MULTIWAY CUT: edge deletion, bounded degree terminals, general setting, ABOVE PATH PACKING
 - MULTICUT for parameter (cut set)+(requests)
 - DIRECTED FEEDBACK VERTEX SET
 - GROUP FEEDBACK problems more generally
 - UNIQUE LABEL COVER kernel cases?

