Assignment 1 (2pts each) Show the following.

(a) For all total computable functions f there is a g total computable such that
\[\forall^\infty x : g(x) = \min(\text{range}(f)); \]

(b) There is a g total computable such that, for all e, $\forall^\infty x : g(x, e) = \min(\text{range}(\varphi_e));$

(c) There is a g total computable such that, for all e, $\forall^\infty x :$
\[g(e, x) = \begin{cases} 1, & \text{if } 5 \in \text{range}(\varphi_e); \\ 0, & \text{otherwise}. \end{cases} \]

Assignment 2 (2pts) Suppose A is a set of natural numbers such that, for all e, e' with $\varphi_e = \varphi_{e'}$ and $e \in A$, we have $e' \in A$. Show that A is infinite.

Note that the third exercise is postponed by one week.

1The quantifier \forall^∞ means “for all but finitely many.”
2Note that this is the effective or constructive version of (a).