The first exercise of this sheet concerns *optimal identification*. We make the following definition.

Given a learner h and a learnee g, we let $\text{conv}(h, g)$ be the least t such that, for all $t' > t$, $h(g[t']) = h(g[t])$ (the point where h on g has converged). Note that conv is not computable. A learner h is said to be *optimal* iff, for all learners h' learning every function GEx-learned by h, if there is $g \in \text{GEx}(h)$ with $\text{conv}(h', g) < \text{conv}(h, g)$, then there is a $g' \in \text{GEx}(h)$ with $\text{conv}(h, g') < \text{conv}(h', g')$; in other words, if h' is strictly better than h on some target function, then h' is strictly worse than h on some other target function.

Exercise 1 (8pts, 4pts for each direction) Let $h \in \mathcal{P}$ show that h is optimal iff

(a) h is consistent (on what it learns);
(b) h is prudent (on what it learns); and
(c) h is strongly non-U-shaped (on what it learns).

Exercise 2 (8pts, 4pts for each direction) Let $S \subseteq \mathcal{R}$. Show that $S \in \text{GFin}$ is equivalent to the existence of $p, d \in \mathcal{R}$ such that

(a) $S \subseteq \{\varphi_{p(i)} \mid i \in \mathbb{N}\}$; and

(b) For all i, j with $i \neq j$ we have

$$\exists x \leq d(i) : \varphi_{p(i)}(x) \neq \varphi_{p(j)}(x).$$

Explicitly show that GFin allows for learning by enumeration.

1Note that $d(i)$ thus give a bound independent of j.