
Limits of Computational Learning

Timo Kötzing

July 22, 2012

Abstract

3, 5, 7, 11, 13, . . . � what's next? What general rule (ap-
parently) produces this sequence? Maybe the sequence
lists all the odd primes, but what if the next datum is
15? Maybe all odd numbers that are not squares? In this
course we will study learning (identi�cation) of in�nite ob-
jects (such as in�nite sequences) from �nite data (such as
initial pieces of the sequence), also known as Inductive In-
ference. What (collections of) sequences can be learned?
What does learning, or identi�cation, actually mean? We
will discuss and compare several notions of �identi�cation.�
The main focus lies on exploring the limits of what can be
learned algorithmically.

1 Introduction

This course starts with a review of some notions from com-
putability theory (Section 2). After this, we will consider
some of the main results from computational learning the-
ory. A standard reference for learning theory is [JORS99].

2 Mathematical Preliminaries

In this section we introduce our mathematical notation
and review basic computability theory. A gentle and quick
introduction, also covering details of the machine model
and basic theorems, is given in [Sho01]. A standard ref-
erence for computability in general is [Rog67], which pro-
vides much greater depth than [Sho01]. Details regarding
Turingmachines and their coding, as well as details for
time and space complexity can be found in [RC94].
N denotes the set of natural numbers, {0, 1, 2, . . .}.
We �x any 1-1 and onto pairing function 〈·, ·〉 : N×N→

N. De�ne π1 and π2 to be the functions such that, for all
x and y,

π1(〈x, y〉) = x; (1)

π2(〈x, y〉) = y. (2)

π1 and π2 are, respectively, called the �rst and second
projection function.
The symbols ⊆,⊂,⊇,⊃ respectively denote the subset,

proper subset, superset and proper superset relation be-

tween sets. For sets A,B, we let A \B = {a ∈ A | a 6∈ B},
A = N \A and Pow(A) be the power set of A.

The quanti�er ∀∞x means �for all but �nitely many x�,
the quanti�er ∃∞x means �for in�nitely many x�. For any
set A, card(A) denotes the cardinality of A.

With dom and range we denote, respectively, domain
and range of a given function.

We sometimes denote a partial function f of n > 0
arguments x1, . . . , xn in lambda notation (as in Lisp) as
λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N, λx c
is the constantly c function of one argument.

For two partial functions f, g and a ∈ N, we write f =a g
i� card({x ∈ N | f(x) 6= g(x)}) ≤ a; we write f =∗ g i�
card({x ∈ N | f(x) 6= g(x)}) is �nite.
For two partial functions f, g, we let f ◦g = λx f(g(x)).

Whenever we consider tuples of natural numbers as in-
put to f , it is understood that the general coding function
〈·, ·〉 is used to (left-associatively) code the tuples into a
single natural number.

If f is not de�ned for some argument x, then we denote
this fact by f(x)↑, and we say that f on x diverges; the
opposite is denoted by f(x)↓, and we say that f on x
converges. If f on x converges to p, then we denote this
fact by f(x)↓ = p.

For a function f and a natural number n we let f [n]
denote the �nite sequence f(0), . . . , f(n−1) (unde�ned, if
one of these is unde�ned).

2.1 Computabiliy Notions

A partial function f : N→ N is partial computable i� there
is a deterministic, multi-tape Turing machine which, on
input x, returns f(x) if f(x)↓, and loops in�nitely if f(x)↑.
The set of all (partial) computable functions is denoted
with P. The total computable functions are denoted with
R.
For a given (code of a) Turing machine program p, we let

ϕp denote the function computed by (the Turing machine
corresponding to) p.

Thus, for each p, ϕp is an element of P, and all elements
of P can be so represented.

For each p, x, we let Φp(x) denote the number of com-
putation steps the Turing machine (coded by) p takes on
input x (if it terminates, unde�ned otherwise); thus, Φp
denotes the partial computable runtime function of the

1



Limits of Computational Learning Timo Kötzing, July 22, 2012

TM-program with code number p in the ϕ-system.
A set of natural numbers is called decidable i� its char-

acteristic function is computable.
An e�ective operator is a mapping Θ : P → P such that

there is an f ∈ R with, for all e, Θ(ϕe) = ϕf(e); similarly
for Θ of higher arity.
We give a number of important theorems of computabil-

ity theory; we omit the proofs, which can be found in
[Sho01] and, in more detail, in [RC94].

Theorem 2.1 (Characterization of Computable Func-
tions). The class of computable functions is the smallest
class C such that

• the functions λx 0 and λx x+ 1 are in C and, for all
i, k with i ≤ k, λx0, . . . , xk xi are in C;

• for all f, g0, . . . , gn ∈ C, λx f(g0(x), . . . , gn(x)) is in
C;

• C is closed under �inductive de�nition;�

• if f ∈ C is a predicate, then λx miny f(x, y) is in C.1

Theorem 2.2 (Further Closure Properties). The class of
computable functions is closed under

• logical connectives;

• arithmetic operations and relations;

• coding of tuples;

• bounded quanti�cation;

• if-then-else;

• �nite variants.

Note that the set of total computable functions is also
closed under the above operations, except the minimiza-
tion; here it is only closed if an explicit minimization
bound is given.

Theorem 2.3 (Halting Problem). The predicate

λp, x ϕp(x)↓

is not a total computable predicate.

Theorem 2.4 (Blum Complexity Measure). The predi-
cate

λp, x, t Φp(x) ≤ t

is total computable.

Theorem 2.5 (Universality). There is a program u such
that, for all p, x,

ϕu(p, x) = ϕp(x).

1Note that miny f(x, y) is de�ned i� there is a y such that f(x, y)
and, for all y′ < y, f(x, y)↓.

Theorem 2.6 (Padding Theorem). There is a 1-1 total
computable function pad such that, for all p, x,

ϕpad(p,x) = ϕp.

Furthermore, pad can be chosen strictly monotone increas-
ing in both arguments.

We �x such a function pad for these lecture notes. We
will use it to get a program equivalent to some given pro-
gram e and di�erent from a given value x.

Theorem 2.7 (S-m-n Theorem, Parameter Theorem).
There is a total computable function s such that, for all
e, x, y,

ϕs(e,x)(y) = ϕe(x, y).

Furthermore, s can be chosen to be strictly monotone in-
creasing. In particular, for all computable functions f
there is a strictly monotone increasing total computable
function s such that, for all x, y,

ϕs(x)(y) = f(x, y).

Theorem 2.8 (Kleene's Recursion Theorem, KRT).
There is a total computable function e such that, for all
p, x,

ϕe(p)(x) = ϕp(e(p), x).

In particular, for all (partial) computable functions f ,
there is an e such that

ϕe(x) = f(e, x).

Theorem 2.9 (Rogers' Fixpoint Theorem). For all total
computable functions f there is an e such that

ϕf(e) = ϕe.

Theorem 2.10 (Case's Operator Recursion Theorem,
ORT, [Cas74]). Let Θ be an e�ective operator. Then there
is a total computable function e such that, for all n, x,

ϕe(n)(x) = Θ(e)(n, x).

Furthermore, e can be chosen strictly monotone increas-
ing.

The importance of e in the theorem just above be-
ing strictly monotone increasing is given in the following
proposition.

Proposition 2.11. Let f ∈ R be strictly monotone in-
creasing. Then range(f) is decidable.

The proof of this proposition is left as an exercise.

2



Limits of Computational Learning Timo Kötzing, July 22, 2012

2.2 Examples

In this section we give examples for the usage of theorems
from Section 2.1.

Theorem 2.12. There is a total computable function r
such that, for all �nite sequences of natural numbers σ, e
and x,

ϕr(σ,e)(x) =

{
σ(x), if x < len(σ);

ϕe(x), otherwise.

For two sets A,B of natural numbers we write A ≤1 B
i� there is a 1-1 total computable function f such that,
for all e, e ∈ A i� f(e) ∈ B. Note that this induces a pre-
order on the powerset of N; intuitively, sets higher up in
the order are more complicated to decide algorithmically.
For A,B ⊆ N we write A ≡1 B i� A ≤1 B and B ≤1 A.
We de�ne the following sets of natural numbers.

A1 = {e ∈ N | ϕe(0)↓};
A2 = {e ∈ N | ϕe is total};
A3 = {e ∈ N | dom(ϕe) is in�nite};
A4 = {e ∈ N | dom(ϕe) 6= ∅};
A5 = {e ∈ N | range(ϕe) is in�nite};
A6 = {e ∈ N | ∃a : ∀∞t : ϕe(t) = a}.

Theorem 2.13. We have that

A1 ≡1 A4 ≤1 A2 ≡1 A3 ≡1 A5 ≤1 A6.

Proof. We �rst prove A1 ≤1 A4. By universality, there
is a program p such that, for all e, x ϕp(e, x) = ϕe(0). Let
s be as given by the S-m-n Theorem (Theorem 2.7). Let
f = λe s(p, e). Then r is 1-1 and computable. We need
to show that, for all e, e ∈ A1 i� f(e) ∈ A4.
Let e ∈ N be given. We have, for all x,

ϕf(e)(x) = ϕs(p,e)(x) = ϕp(e, x) = ϕe(0).

Suppose �rst e ∈ A1. We get ϕe(0)↓; hence, ϕf(e)(0)↓,
showing 0 ∈ dom(ϕf(e)), which gives f(e) ∈ A4 as desired.
Suppose second f(e) ∈ A4. We get ∃x : ϕf(e)(x)↓;

pick any such x. We have ϕf(e)(x) = ϕe(0), which shows
ϕe(0)↓, thus e ∈ A1 as desired.

We now prove A4 ≤1 A1. Using the above closure prop-
erties and Theorem 2.4, there is a program p such that,
for all e, x

ϕp(e, x) = µt ∃a ≤ t : Φe(a) ≤ t.

Let s be again as given by the S-m-n Theorem (Theo-
rem 2.7). Let f = λe s(p, e). Then r is 1-1 and com-
putable. We need to show that, for all e, e ∈ A4 i�
f(e) ∈ A1.

Let e ∈ N be given. We have, for all x,

ϕf(e)(x) = ϕs(p,e)(x) = ϕp(e, x) = µt ∃a ≤ t : Φe(a) ≤ t.

Suppose �rst e ∈ A4 and let x ∈ dom(ϕe). Further, let t =
Φe(x). This t is an example t such that ∃a ≤ t : Φe(a) ≤ t,
which shows ϕf(e)(0)↓, and, thus, f(e) ∈ A1 as desired.
Suppose second f(e) ∈ A1. Thus, ϕf(e)(0)↓. Therefore,

there is a t such that ∃a ≤ t : Φe(a) ≤ t; pick any
such t and let a be such that Φe(a) ≤ t. Then we have
a ∈ dom(ϕe), which gives e ∈ A4 as desired.

Regarding A2 ≤1 A3 we use the S-m-n Theorem simi-
larly as above to get a 1-1 f ∈ R such that, for all e, x,

ϕf(e)(x) = µt ∀a ≤ x : Φe(a) ≤ t.

Let e ∈ N be given. Suppose �rst e ∈ A2. We get ϕe
is total; hence, for all x, there is a t such that ∀a ≤ x :
Φe(a) ≤ t. This gives that ϕf(e) is total and, thus, has
in�nite domain. Therefore we have f(e) ∈ A4 as desired.
Suppose second that f(e) ∈ A3 and let x ∈ N. It su�ces

to show that ϕe is de�ned on x (as x is chosen arbitrarily,
this shows ϕe to be total, i.e., e ∈ A2). Let y > x such that
y ∈ dom(ϕf(e)) (this has to exist since f(e) ∈ A3). Thus,
there is a t such that ∀a ≤ y : Φe(a) ≤ t. In particular,
for a = x, we get Φe(x) ≤ t, which gives ϕe(x)↓ as desired.

Regarding A1 ≤1 A2 we use f as in the proof for A1 ≤1

A4, in particular, f is such that, for all e, x,

ϕf(e)(x) = ϕe(0).

Let e ∈ N be given.
Suppose �rst e ∈ A1. We get ϕe(0)↓; hence, ϕf(e) is

total as desired.
Suppose second f(e) ∈ A2. Thus, ϕf(e)(0)↓; hence,

ϕe(0)↓, which gives f(e) ∈ A1 as desired.

All other proofs are left as exercises.

Theorem 2.14. We have that

A2 6≤1 A1.

Proof. Suppose, by way of contradiction, there is an s ∈
R such that, for all e,

ϕe is total ⇔ ϕs(e)(0)↓.

By KRT (Theorem 2.8), there is e such that, for all x,

ϕe(x) =

{
0, if ¬(Φs(e)(0) ≤ x)

↑, otherwise.

Clearly,
ϕe is total ⇔ ϕs(e)(0)↑,

a contradiction.

3



Limits of Computational Learning Timo Kötzing, July 22, 2012

Theorem 2.15. We have that

A1 6≤1 A1 and A1 6≤1 A1.

Proof. Suppose, by way of contradiction, A1 6≤1 A1, as
witnessed by s ∈ R. Thus, for all e,

ϕe(0)↓ ⇔ ϕs(e)(0)↑.

Using Rogers' Fixedpoint Theorem (Theorem 2.9), we see
that there is an e such that ϕe = ϕs(e), a contradiction.

Similarly, we get A1 6≤1 A1.

Theorem 2.16. For each p, let

Θ(ϕp) =

{
λx 0, if dom(ϕp) is in�nite;

λx ↑, otherwise.

Then Θ is not an e�ective operator.

Proof. Suppose, by way of contradiction, Θ is an e�ective
operator, as witnessed by f ∈ R, i.e., for all p,

ϕf(p) =

{
λx 0, if dom(ϕp) is in�nite;

λx ↑, otherwise.

By KRT (Theorem 2.8), there is p such that, for all x,

ϕp(x) =

{
0, if Φf(p)(0) ≤ x;

↑, otherwise.

Then we have

dom(ϕp) is in�nite;⇔ ϕf(e)(0)↑,

a contradiction.

Theorem 2.17. For each p, let

Θ(ϕp) =

{
λx 0, if range(ϕp) is in�nite;

λx ↑, otherwise.

Then Θ is not an e�ective operator.

The proof of this theorem is left as an exercise.

Theorem 2.18. For all total computable f there is an e
such that ϕe is extendable by a total computable function,
but ϕf(e) is not a total computable extension of ϕe.

Proof. Suppose, by way of contradiction, that we have
an f ∈ R such that, for all e such that there is an h ∈ R
with ϕe ⊆ h, ϕe ⊆ ϕf(e) ∈ R.
By KRT (Theorem 2.8), there is e such that, for all x,

ϕe(x) = ϕf(e)(0) + 1.

Then we have that ϕe is either total or everywhere un-
de�ned; in either case, ϕe is extendable by a total com-
putable function. Thus, by supposition, ϕf(e) is total;
hence, so is ϕe. However, ϕf(e)(0) 6= ϕf(e)(0) + 1 = ϕe(0),
a contradiction to ϕf(e) extending ϕe.

Theorem 2.19. For all total computable f there is an
e such that the complement of dom(ϕe) contains exactly
one element, but ϕf(e) is not a total computable extension
of ϕe.

The proof of this theorem is left as an exercise.

Theorem 2.20. Let

S0 = {g ∈ R | ϕg(0) = g}.

Let h ∈ R be given. Then there is g ∈ S0 such that

∀∞x : h(g[x]) 6= g(x).

Proof. By KRT, there is a e such that, for all x,

ϕe(z) =

{
e, if x = 0;

h(ϕe[x]) + 1, otherwise.

Applications of ORT In this section we give an appli-
cation of ORT (Theorem 2.10); In particular, we can use
ORT to show the existence of a padding function (Theo-
rem 2.6). More theorems using ORT can be found in later
sections on learning theory.

Theorem 2.21 (Padding Theorem). There is a 1-1 total
computable function pad such that, for all p, x,

ϕpad(p,x) = ϕp.

Proof. By ORT, there is a function f ∈ R such that, for
all x, y, z, ϕf(x,y)(z) =

0, if f(x, y) ∈ {f(0), . . . , f(〈x, y〉 − 1)};
1, else if f(x, y) ∈ {f(〈x, y〉+ 1), . . . , f(z)};
ϕx(z), otherwise.

It su�ces to show that p is 1-1. Let x, x′, y, y′ be such
that f(x, y) = f(x′, y′). Suppose, by way of contradiction,
〈x, y〉 < 〈x′, y′〉. Then we have, for z = 〈x′, y′〉,

1 = ϕf(x,y)(z) = ϕf(x′,y′)(z) = 0,

a contradiction.

3 Basic Learning Theory

In this course we mainly study computational learning the-
ory, speci�cally in the sense of learning in the limit ; the
most common name for this area of research is inductive
inference, even though there are many �elds of study con-
cerned with this kind of inference.
This section discusses the basic notions of learning the-

ory. We start by giving a brief overview over the history
of learning theory, followed by the general idea of what
is learning, and how does it relate to similar concepts of
identi�cation or extrapolation and so on.

4



Limits of Computational Learning Timo Kötzing, July 22, 2012

3.1 History

The literature on inductive inference goes back to a paper
by Gold [Gol67]. Gold successively did not publish many
more papers, and it was not until Blum and Blum [BB75]
that this line of research was picked up among western
scientists. However, the mentioned paper by Gold by now
got over 3000 citations (according to Google scholar).
Meanwhile, the two Latvian researchers Rusins

Freivalds and Janis Barzdins made valuable contributions
starting in the 1970s to inductive inference. This in�u-
enced Rolf Wiehagen, a German researcher, who was very
active in the area for a long period of time starting in the
mid-1970s with many important contributions, inspiring
colleagues and students and thus spreading the study of
inductive inference.
In the western world, John Case picked up the paper

by Blum and Blum and made successively many impor-
tant contributions, thus spreading the study of inductive
inference just as Rolf Wiehagen did.

3.2 What is Learning?

In inductive inference, to learn means to derive, from a
�nite set of observations, knowledge about something un-
observed. In this course, we will chie�y be concerned with
deriving knowledge about in�nite sequences by observing
�nite parts of these sequences.
One of the simplest models of learning is �nite learn-

ing. In �nite learning, the learner sees more and more
data and, after �nite time, makes an output. Learning is
consider successful, if the output is a correct description
of the input sequences (we consider each natural number
p a correct description for ϕp).

d0, d1, d2, . . . h p

The general setting we consider is as follows. A learner
is presented with more and more of an unknown in�nite
sequence. In each step, the learner makes an output; the
sequence of these outputs is the learning sequence. We
have a relation on learning and input sequences to decide
whether learning is successful.

d0, d1, d2, . . . h p0, p1, p2, . . .

We distinguish the following two kinds of learning: on-
line learning, where a learner extrapolates �nitely much
at any point; and o�-line learning, where a learner gives
conjectures about the complete nature of the sequence to
be learned.
Furthermore, we distinguish between cases of learnees

that are static (or passive), and those that react to the
learning process. Table 1 gives an overview of these set-
tings.
In this course we will mostly consider the case of passive

learnees.

Passive Learnee Reactive Learnee

O�-Line Identi�cation Dynamic Modeling
On-Line Extrapolation Coordination

Table 1: The four categories of learning.

3.3 Formal De�nitions

A learner is any partial computable function.
A learnee is any total computable function.
For this course, a learning criterion is a tuple (C, α, β, δ)

as follows.
We call C the learner admissibility restriction; it can be

any subset of P and intuitively de�nes what learners may
be used for learning. An example is C = R, requiring all
learners to be total.
We call α the global learning restriction; it de�nes a

restriction on all learning sequences, even those on un-
interesting data. An example is to require a learner to
always output only programs for total functions.
We call β a sequence generating operator ; β is a func-

tion taking a learner h and a learnee g and returns the
learning sequence of h on g. Our standard example is
the generation of learning sequences according to Gold's
model [Gol67]; we denote his operator with G and de�ne
it as follows.

G : (P ×R)→ P; (h, g) 7→ λn h(g[n]).

Intuitively, β de�nes how a learner processes a given
learnee to produce a sequence of conjectures.
A sequence acceptance criterion is a predicate δ on a

learning sequence p and a learnee g. We give the following
examples.

Ex(p, g) ⇔ [∀∞i : ϕp(i) = g ∧ p(i) = p(i+ 1)];

Bc(p, g) ⇔ [∀∞i : ϕp(i) = g];

Fin(p, g) ⇔ [∃e : range(p) ⊆ {e, ?} ∧ ϕe = g];

T(p, g) ⇔ [∀i : ϕp(i) ∈ R];

M(p, g) ⇔ [∀∞i : p(i) = g(i)];

R(p, g) ⇔ p ∈ R.

Note that any sequence acceptance criterion can also be
used as a global learning restriction.
We combine any two sequence acceptance criteria δ and

δ′ by intersecting them, and we denote this combination
by δδ′.
Instead of writing the tuple (C, α, β, δ), we sometimes

write Cτ(α)βδ.

De�nition 3.1. Let a learning criterion I = (C, α, β, δ)
be given. For a learner h we say that h I-learns a learnee
g i�

(1) h ∈ C;

(2) for all g′ : N→ N, with p = β(h, g′), α(p, g′); and

5



Limits of Computational Learning Timo Kötzing, July 22, 2012

(3) with p = β(h, g), δ(p, g).

As discussed before, this means that C restricts the admis-
sible learners, α gives a restriction that needs to hold for
all possible learning sequences, and δ gives the restriction
for the learning sequence resulting from h on g; learning
sequences are de�ned by β.
For each learning criterion I, we denote the class of

all total computable functions I-learned by h with I(h).
Abusing notation, we use Cτ(α)βδ to denote the set of all
classes of languages I-learnable by some learner (as well
as the learning criterion).
We omit τ(α) if α gives no restriction; similarly with
C = P.

3.4 Examples

In this section we present a number of example learn-
ing criteria that can be built from the de�nitions of Sec-
tion 3.3.
Finite learning, from Section 3.2, is captured by GFin;

the learner can look at more and more data, and, eventu-
ally, output something di�erent from ?, its �nal answer.
Gold's �rst learning criterion, learning as identi�cation

in the limit, is given by GEx. In particular, a learner h
GEx-learns a learnee g i� there is i0 such that, for all
i ≥ i0, h(g[i]) = h(g[i0]) and ϕh(g[i0]) = g. Intuitively, the
learner �nds an explanation for the data given.
An example of extrapolation is given by GM. In partic-

ular, a learner h GM-learns a learnee g i� there is i0 such
that, for all i ≥ i0, h(g[i]) = g(i). Intuitively, the learner
h extrapolates the sequence one element at a time.

4 Extrapolation and Exact Identi-

�cation

In this section we give some theorems regarding learning
criteria. Of some importance throughout learning theory
are the following two sets of total computable functions.
Firstly, the set

SFinSup = {g ∈ R | ∀∞x : g(x) = 0}

is the set of all functions of �nite support, i.e., functions
which are only non-0 on �nitely many inputs. Secondly,
the set

SSD = {g ∈ R | ϕg(0) = g}

is the set of all self-describing functions, i.e., functions,
which give a description (in the sense of ϕ-programs) of
themselves on input 0.
We start with some theorems on extrapolation and exact

identi�cation, also relating these two concepts.
The �rst theorem we give deals with di�erent kinds of

extrapolation. The main model of extrapolation is given
by the learning criterion GM. Note that in this model,

the learner may diverge on �nitely much input even for
target learnees; with GRM we can model the additional
restriction that, at least on target learnees, the learner
has to be required to be total. Finally, RGM models
extrapolation by total learners. The following theorem
shows that each successive restriction lowers the learning
power in these criteria.

Theorem 4.1. We have

RGM ⊂ GRM ⊂ GM.

Proof. Each inclusion is trivial, as more left criteria are
more restricted then more right criteria. It remains to
show that the learning criteria are indeed di�erent in learn-
ing power.

We start by showing RGM 6= GRM. We do this by
�rst showing that SSD ∈ GRM; then we show that SSD 6∈
RGM.

Let h ∈ P be de�ned such that, for all σ,

h(σ) =

{
0, if σ = ∅;
ϕσ(0)(len(σ)), otherwise.

Let g ∈ SSD. Then we have h(g[0])↓, as well as, for all
i > 0,

h(g[i]) = ϕg(0)(i) = g(i).

This shows that h on g always converges and almost always
gives the correct extrapolation.

To show that SSD 6∈ RGM we suppose, by way of con-
tradiction, otherwise, as witnessed by some h ∈ R. By
KRT, there is a e such that, for all x,

ϕe(x) =

{
e, if x = 0;

h(ϕe[x]) + 1, otherwise.

Let g = ϕe. Clearly, g ∈ SSD. Now we have, for all i > 0,

g(i) = h(g[i]) + 1 6= h(g[x]).

Next, we show GRM 6= GM by showing that the set

S0 = {g ∈ R | ∀∞n : ϕg(n) = g}

serves as a separator. Let h ∈ P be de�ned such that, for
all σ,

h(σ) =

{
0, if σ = ∅;
ϕlast(σ)(len(σ)), otherwise.

Let g ∈ S0. Then we have, for all i large enough,

h(g[i]) = ϕg(i−1)(i) = g(i).

This shows that h on g almost always gives the correct
extrapolation.

6



Limits of Computational Learning Timo Kötzing, July 22, 2012

To show that S0 6∈ GRM we �rst show that S0 is
dense.2 To that end, let σ be a sequence. By KRT,
there is a e such that, for all x,

ϕe(x) =

{
σ(x), if x < len(σ);

e, otherwise.

Clearly, g ∈ S0 and σ ⊆ g. From S0 being dense, we see
that h has to be de�ned on all inputs (since all inputs can
be extended to something that h learns, and h is always
de�ned on something that it learns); i.e., h ∈ R.
Now we get, using KRT, that there is a e such that, for

all x,

ϕe(x) =

{
e, if x = 0;

pad(e, h(ϕe[x]) + 1), otherwise.

Let g = ϕe. Clearly, g ∈ SSD. Now we have, for all i > 0,

g(i) = h(g[i]) + 1 6= h(g[x]).

In contrast to the results regarding extrapolation, we
have the following result on total learners in identi�cation.
We call a sequence acceptance criterion δ delayable i�, for
all monotone functions r such that

• limx→∞ r(x) =∞ and

• ∀x : r(x) ≤ x,

we have that with any (p, g) ∈ δ we get (p◦r, g) ∈ δ. Many
δ, such as Ex, Bc and T are delayable, but not M. We
get the following theorem.

Theorem 4.2. Let δ be delayable. Then

Gδ = RGδ.

In fact, all learners can be assumed linear time com-
putable.

Proof.

The next theorem shows that there is no omnipotent
GEx-learner.

Theorem 4.3. We have

R 6∈ GEx.

Proof. Suppose, by way of contradiction, there is h ∈ P
such thatR = GEx(h). We �rst show the following claim.

∀σ∃τ : h(σ � τ) 6= h(σ). (3)

2A set S ⊆ R is called dense i�, for all sequences σ, there is g ∈ S
with σ ⊆ g.

Intuitively, h makes a mind change somewhere after any
arbitrary σ. Let σ be given, and let, for each j ∈ {0, 1},
gj ∈ R be the extension of σ with in�nitely many js.
Then hGEx-learns both g0 and g1; thus, there are t0, t1 >
len(σ) such that

ϕh(g0[t0]) = g0 and ϕh(g1[t1]) = g1.

Note that we can choose t0 and t1 to be larger than any
number we want (for example len(σ)), since h has to make
a correct output in�nitely often.
Thus, we get h(g0[t0]) 6= h(g1[t1]), so one of the two

extensions g0[t0] and g0[t0] of σ will serve as the τ required
for (3).
Now we inductively de�ne a (computable) family of se-

quences (σi)i∈N as follows.

σ0 = ∅;
∀i : σi+1 = σi � µτ h(σi � τ) 6= h(σi).

By (3), for all i, σi is de�ned. Let g =
⋃
i∈N σi. Then

g ∈ R, but h makes in�nitely many mind changes on g, a
contradiction.

The learning criterion GBc is much more powerful than
GEx. The following theorem gives the separation.

Theorem 4.4. We have

GEx ⊂ GBc.

Proof. We use the set

S0 = {g ∈ R | ∀∞n : ϕg(n) = g}

just as in Theorem 4.1. Clearly, we have S0 ∈ GBc as
witnessed by h ∈ P such that

∀σ : h(σ) =

{
0, if σ = ∅;
last(σ), otherwise.

To show that S0 6∈ GEx, suppose, by way of contradic-
tion, there is h ∈ R such that S0 ∈ GEx(h).
By ORT, there are a computable family of �nite se-

quences (σi)i∈N, e ∈ N and a 1-1 f ∈ R such that, for all
i, j, x, σ,3

σ0 = ∅;

σi+1 = σi � µτ

{
τ ∈ {f(σi, 0)t, f(σi, 1)t | t ∈ N} ∧
h(σi � τ) 6= h(σi);

ϕe(x) =
⋃
i∈N

σi;

ϕf(σ,j)(x) =


σ(x), if x < len(σ);

f(σ, j), if ∀y, len(σ) < y < x :

h(ϕf(σ,j)[y]) = h(σ);

ϕe(x), otherwise.

3In the minimization over a set of sequences, we suppose that the

coding of sequences is monotone with respect to sequence extensions,

i.e., if σ is a pre�x of τ , then the code of σ is numerically less than

the code of τ .

7



Limits of Computational Learning Timo Kötzing, July 22, 2012

We �rst show by induction that, for each i, σi is de�ned,
with trivial induction begin. Let i ∈ N be such that σi
is de�ned. Suppose, by way of contradiction, σi+1 is not
de�ned. Let, for each j ∈ {0, 1}, gj ∈ R be the extension
of σi with in�nitely many f(σi, j)s. It is easy to see that
now we have, for each j ∈ {0, 1},

gj = ϕf(σi,j)

and gj ∈ S0. Thus, h GEx-learns both g0 and g1, which
shows that h needs to make a mind change on one of them,
similarly to Theorem 4.3, a contradiction.
Thus, we get that ϕe is total; let g = ϕe. We have that

h makes in�nitely mind changes on g, so it su�ces to show
that g ∈ S0. Let n ∈ N, and suppose that, for some i, j,
g(n) = f(σi, j). Thus, with t minimal such that

h(σi � f(σi, j)
t) 6= h(σi), (4)

we have
σi+1 = σi � f(σi, j)

t. (5)

For all x we have ϕg(n)(x) =

ϕf(σi,j)(x) =


σi(x), if x < len(σi);

f(σi, j), if ∀y, len(σi) < y < x :

h(ϕf(σi,j)[y]) = h(σi);

ϕe(x), otherwise.

In the �rst and the last case, we immediately get

ϕg(n)(x) = g(x)

as desired. As t is minimal such that (4) holds, we have
that the middle case holds i� len(σi) ≤ x ≤ t, in which
case x ≤ σi+1 by (5). Thus, for all such x,

ϕg(n)(x) = f(σi, j) = σi+1(x) = g(x).

This �nishes the proof.

As powerful as GBc is, it does not encompass all unions
ofGEx-learnable sets, as shown by the following theorem.

Theorem 4.5. We have SFinSup,SSD ∈ GEx, but

SFinSup ∪ SSD 6∈ GBc.

This entails R 6∈ GBc.

Proof. Similarly as in Theorem 2.12, there is a function
r ∈ R (using the S-m-n Theorem) such that, for all σ,

∀x : ϕr(σ)(x) =

{
σ(x), if x < len(σ);

0, otherwise.

For each �nite sequence σ, let σ̂ denote σ with trailing 0s
removed. Let h ∈ P be such that, for all σ,

h(σ) = r(σ̂).

It is now easy to verify that h GEx-learns SFinSup.
Let h′ ∈ P be such that, for all σ,

h′(σ) =

{
?, if σ = ∅;
σ(0), otherwise.

Clearly, h′ even shows SSD ∈ GFin.
An easier version of the claim �SFinSup ∪ SSD 6∈ GBc�

is left as an exercise, so this will claim will not be shown
before this exercise is due.

What can be learned? The following theorem gives
a large class of sets of functions which can be learned,
namely all uniformly computable sets of functions. This
is called �learning by enumerating.�

Theorem 4.6. Let f ∈ R. Let S = {λx f(e, x) | e ∈ N}.
Then

S ∈ τ(T)GEx.

The proof of this theorem is left as an exercise.
Let UComp be the set of all classes S such that there

is an f with S = {λx f(e, x) | e ∈ N}; these sets are
called sets of uniformly computable function. We get the
following theorem about total learning.

Theorem 4.7. We have

{S ⊆ R | ∃S ′ ∈ UComp : S ⊆ S ′} = τ(T)GEx

and
τ(T)GEx ⊂ GTEx ⊂ GEx.

Proof. The inclusion UComp ⊆ τ(T)GEx was shown
in Theorem 4.6. The converse inclusion follows from the
observation, that any learner h ful�lling τ(T) has a range
of only total functions, so the range h would be programs
for a set of uniformly computable functions.
Next we show SSD ∈ GTEx \ τ(T)GEx. The inclusion

is trivial. Suppose, by way of contradiction, there is h ∈ R
such that SSD ⊆ τ(T)GEx(h). By KRT, there is e such
that

∀x : ϕe(x) =

{
e, if x = 0;

ϕh(ϕe[x]) + 1, otherwise.

We have that ϕe is total, as h only outputs programs for
total functions; thus, ϕe ∈ SSD. Clearly, h does not GEx-
learn ϕe, a contradiction.
Finally, we show GTEx ⊂ GEx. We give two proofs

for this, one with a hand-crafted set S, and one with a
self-learning set of functions.
Proof 1: Let

S = {g ∈ R | ∃e∀∞n : π1(g(n)) = e ∧ ϕe = g}.4

4Recall that π1 is a functions such that, for all x, y, π1(〈x, y〉) = x,
i.e., π1 extracts the �rst component from a pair.

8



Limits of Computational Learning Timo Kötzing, July 22, 2012

Observe that S is dense, and, clearly, S ∈ GEx. We
now show S 6∈ GTEx. Suppose, by way of contradiction,
otherwise, as witnessed by h′ ∈ P. As S is dense, we
have h′ ∈ R; furthermore, also from denseness, h′ outputs
programs for total functions on all inputs.
By KRT, there is e such that, for all x,

ϕe(x) = µy y ∈ {〈e, 0〉, 〈e, 1〉} \ {ϕh′(ϕe[x])(x)}.

As h makes only outputs for total functions, we get that
ϕe total; thus, ϕe ∈ S. But of course h′ does not GTEx-
identify ϕe, a contradiction.
Proof 2: Let h be such that, for all σ 6= ∅,

h(σ) = ϕlast(σ)(σ).

Let S = GEx(h); S is called a self-learning set of func-
tions, as h does not do much work � the main parts of
identi�cation are done by running the programs provided
by the functions from the sets themselves.
Clearly, S ∈ GEx (by de�nition). Observe that S is

dense. We now show S 6∈ GTEx. Suppose, by way of
contradiction, otherwise, as witnessed by h′ ∈ P. As S is
dense, we have h′ ∈ R.
Let r ∈ R be strictly monotone increasing such that,

for all e, x, y,
ϕr(e,x)(y) = e.

By KRT, there is e such that, for all x,

ϕe(x) = r(e, ϕh′(ϕe[x])(x) + 1).

From S dense, we get that h makes only outputs for total
functions. This gives ϕe total; thus, ϕe ∈ S. But of course
h′ does not GTEx-identify ϕe, a contradiction.

The following theorem relates the learning power of ex-
trapolation and identi�cation.

Theorem 4.8. We have the following.

(1) RGM = τ(T)GEx;

(2) GTEx ⊂ GRM ⊂ GEx;

(3) GM = GBc.

Proof. We show only item 3., leaving the others as an
exercise. Let h ∈ P be given. We view h as a trying
to identify a set of functions an will now construct h′ to
extrapolate the same set of functions. Let h′ ∈ P be such
that, for all σ,

h′(σ) = ϕh(σ)(len(σ)).

Let g ∈ GBc(h); we will show that g ∈ GM(h′). Let t0
be such that, for all t ≥ t0, ϕh(g[t]) = g. Thus we have, for
all t ≥ t0,

h′(g[t]) = ϕh(g[t])(t) = g(t).

This shows that g is GM-learned (extrapolated) by h′.

Consider now h ∈ P as an extrapolator. By ORT, there
is a function h′ ∈ R such that, for all σ, x,

ϕh′(σ)(x) =

{
σ(x), if x < len(σ);

h(ϕh′(σ)[x]), otherwise.

Let g ∈ GM(h); we show that g ∈ GBc(h′). Let t0 be
such that, for all t ≥ t0, h(g[t]) = g(t) and let t ≥ t0. We
show by induction on x that ϕh′(g[t])(x) = g(x); this is
trivial for x < t. Let now x ≥ t be such that, for all y < x,
ϕh′(g[t])(y) = g(y); thus, ϕh′(g[t])[x] = g[x]. We now have

ϕh′(g[t])(x) = h(ϕh′(g[t])[x]) = h(g[x]) = g(x).

This �nishes the induction. Therefore, g ∈ GBc(h′) as
desired.

We now show GTEx 6= GRM. Let

S = {g ∈ R | ∀n : ϕg(n)(0)↓ ∧ ∀∞n : ϕg(n)(0) = g(n+ 1)}.

Clearly, S is GRM-learnable by λσ ϕlast(σ)(0). Suppose,
by way of contradiction, S ∈ GTEx, as witnessed by h ∈
R. By ORT, there is e and a strictly monotone increasing
f ∈ R such that, with g = ϕe, for all x, g(x) ={
f(x, 0), if x < 2;

min({f(x, 0), f(x, 1)} \ {ϕh(g[x−2])(x) + 1}) otherwise;

and, for all n, i, x,

ϕf(n,i)(x) = g(n+ 1).

We will show, by induction on n, that for all n, g(n)↓
and ϕg(n)(0)↓. This will prove the claim, as this gives
g ∈ S and h does not GTEx-learn g.

Let n > 1 be such that, for all i < n, g(i)↓ and ϕg(n)(0)↓.
By ORT, there are p, q such that

ϕp(x) = g[n− 1] � q∞

ϕq(x) = q.

Using the induction hypothesis we get ϕp ∈ S. Thus,
ϕh(g[n−2]) and ϕh(g[n−1]) are, by assumption on h, total.
This gives g(n)↓ and g(n + 1)↓; in particular, ϕg(n)(0) =
g(n + 1)↓, which concludes the induction and, thus, the
proof.

As the last theorem in this section we prove that R is
not GBc-learnable; this gives a �rst example for how to
prove that some set of functions is not GBc-learnable.

Theorem 4.9. We have

R 6∈ GBc.

9



Limits of Computational Learning Timo Kötzing, July 22, 2012

Proof. Suppose, by way of contradiction, there is h ∈ R
such thatR = GBc(h). We �rst show the following claim.

∀σ∃τ, y : ϕh(σ�τ)(y)↓ ∧ y ≥ len(σ � τ). (6)

Intuitively, we show that we can extend any σ such that
h makes an extrapolation.
Let σ be given, and let g0 ∈ R be the extension of σ

with in�nitely many 0s. Then h GBc-learns g0 ; thus,
there are t0 > len(σ) such that

ϕh(g0[t0]) = g0.

This shows Equation (3).
Now we inductively de�ne a (computable) family of se-

quences (σi)i∈N as follows. We let σ0 be ∅. If σi is already
de�ned, then we search for an extension τ and a y as in
Equation (3). Then we concatenate σ with τ and �ll up the
resulting sequence with elements di�erent from ϕh(σ�τ)(y);
this is our σi+1. Using Equation (3), we get g ∈ R, but h
is in�nitely wrong on g (outputs a program for a function
not correctly computing g), a contradiction.

5 Almost Everywhere Correct

Learning

In this section we consider learning with (�nitely many)
errors. Instead of requiring to �nd a program that cor-
rectly computes the input function on all arguments, we
may be happy programs that are correct only on all but
�nitely many arguments.

De�nition 5.1. Let n ∈ N and f, f ′ be functions. We
write f =n f ′ i� f and f ′ are the same function on all but
at most n arguments. Furthermore, we write f =∗ f ′ i�
the set of arguments on which f and f ′ di�er is �nite. We
use ∗ as a special symbol and write, for all n ∈ N, n < ∗.
Let a ∈ N ∪ {∗}. We de�ne the following sequence ac-

ceptance criteria on a learning sequence p and a learnee
g.

Exa(p, g) ⇔ [∀∞i : ϕp(i) =a g ∧ p(i) = p(i+ 1)];

Bca(p, g) ⇔ [∀∞i : ϕp(i) =a g].

Not surprisingly, criteria based on such inexact identi-
�cation is more powerful than exact identi�cation. The
next theorems deal with proving this, culminating in the
surprising result that GBc∗ learning is maximally power-
ful, i.e., there is a GBc∗-learner which learns each total
computable function (see Theorem 5.5).
But �rst we show how the hierarchies of learning classes

for errors with Ex-learning, with Bc-learning, and how
these hierarchies relate.

Theorem 5.2. Let a, b ∈ N ∪ {∗} with a < b. Then we
have

GExa ⊂ GExb.

This proof is left as an exercise.

Theorem 5.3. Let a, b ∈ N ∪ {∗} with a < b. Then we
have

GBca ⊂ GBcb.

Proof. We only show GBc0 ⊂ GBc1. Let

S = {g ∈ R | ∀∞n : ϕg(n) =1 g}.

Using λσ last(σ), we see that S ∈ GBc1. Suppose, by
way of contradiction, S ∈ GBc0 as witnessed by h ∈ R;
�x a program for h.
By ORT, there are a computable family of �nite se-

quences (σi)i∈N, e ∈ N and a 1-1 P, f1, f2, p ∈ R such
that, for all i, j, x, t, σ,

P (σ, j, t) = ϕh(σ�p(σ,j)�p(σ,0)t(len(σ))↓ 6= p(σ, j);

f1(σ) = π1(µ〈j, t, s〉 P (σ, j, t)↓s)
f2(σ) = π2(µ〈j, t, s〉 P (σ, j, t)↓s)

σ0 = ∅;
σi+1 = σi � p(σi, f1(σ)) � p(σi, 0)f2(σ);

ϕe(x) =
⋃
i∈N

σi;

ϕp(σ,j)(x) =



σ(x), if x < len(σ);

p(σ, f1(σ)), else if x = len(σ);

p(σ, 0), else if f2(σ)↑;
p(σ, 0), else if x− len(σ) ≤ f2(σ);

ϕe(x), otherwise.

Theorem 5.4. We have

GEx∗ ⊂ GBc.

Proof. We show �⊆� and leave the separation as an ex-
ercise. Let S ∈ GEx∗ as witnessed by h ∈ R.
As in Theorem 2.12, let p ∈ R be such that, for all �nite

sequences of natural numbers σ and e, x,

ϕp(σ,e)(x) =

{
σ(x), if x < len(σ);

ϕe(x), otherwise.

Let h′ ∈ R be such that, for all σ, h′(σ) = p(h(σ)).
Let g ∈ S and let t0 be such that, for all t ≥ t0, h(g[t]) =

h(g[t0]) is a correct program for g, up to �nitely many
mistakes. Let t1 ≥ t0 be such that, for all t ≥ t, h(g[t0])
is a correct program for all arguments t ≥ t1. Thus, for
all t ≥ t1, h

′(g[t]) = p(h(g[t])) is a correct program for g.

Theorem 5.5. We have

R ∈ GBc∗.

10



Limits of Computational Learning Timo Kötzing, July 22, 2012

Proof. Using ORT, there is h ∈ R such that, for all σ, x,

ϕh(σ)(x) =


ϕp(x), if p ≤ len(σ) is the least number s.t.

∀y < len(σ) : Φp(y) ≤ x ∧
ϕp(x) = σ(x);

0, if no such p exists.

Let g ∈ R and let p be the least index for g. Let t0 be large
enough such that p ≤ t0 and, for all p′ < p, ϕp′ [t0] 6= g[t0].
We show that, for all t ≥ t0, ϕh(g[t]) =∗ g. Let t ≥ t0

and let x0 = max{Φp(y) | y < t}. We have, for all x ≥ x0,

ϕh(g[t])(x) = ϕp(x),

as t is large enough so that h on g[t] considers p, while
t is also large enough so that all p′ < p are either not
convergent or incorrect; �nally, we also have that x is large
enough so that p is convergent on all necessary inputs.
This shows that h GBc∗-identi�es g.

6 Consistency and Iterativeness

In this section, we �rst introduce consistency (and a some-
what weaker variant, conformality), followed by the notion
of iterative learning. Then we relate these notions.
Consistency is the requirement that a learner is correct

on all data it has seen so far. Formally, we model this
restriction as a sequence acceptance criterion Cons such
that

Cons = {(p, g) | ∀n : p(n) =?∨∀x < n : ϕp(n)(x) = g(x)}.

In other words, when some information g[n] is available,
then the conjecture is for a function which starts with g[n].
Conformality, on the other hand, allows for unde�ned

values in ϕp(n) � only contradictory output is forbidden.
Formally, we de�ne sequence acceptance criterion Conf
such that

Conf = {(p, g) | ∀n∀x < n : ϕp(n)(x)↓ 6=?⇒
ϕp(n)(x) = g(x)}.

Iterative learning requires the learner to forget all old
data, and only react to the current, newest datum. In ad-
dition, the learner is allowed access to its current hypoth-
esis. Formally, we model iterative learning as a sequence
generating operator It de�ned recursively as follows. For
a given learner h and learnee g,

It(h, g)(0) = ?;

∀n : It(h, g)(n+ 1) = h(It(h, g)(n), n, g(n)).

Note that the new datum is, implicitly, 〈n, g(n)〉, i.e., the
learner gets to know where in the sequence the given func-
tion value is.

Theorem 6.1. We have

τ(Cons)GEx = τ(Conf)GEx ⊂ GConsEx

⊂ ItEx ⊂ GEx.

Proof. Regarding �τ(Conf)GEx ⊆ τ(Cons)GEx�, let
S ∈ τ(Conf)GEx as witnessed by h.
Let g ∈ P be such that, for all σ, x,5

gσ(x) =

{
σ(x), if x < len(σ);

µy h(gσ[x] � y) = h(gσ[x]), otherwise.

With s-m-n, we let p ∈ R be such that, for all σ, ϕp(σ) =
gσ.
We de�ne h′ for all σ, x such that

h′(σ � x) =


h′(σ), if ∀y < x : h(σ � y) 6= h(σ)∧

h(σ � x) = h(σ);

p(σ � x), otherwise.

We �rst show that, for all σ, σ ⊆ ϕh′(σ). Let σ be a
sequence. Let σ′ ⊆ σ � x be such that h′(σ � x) = p(σ′).
We show, by induction on n,

∀n ≤ len(σ) : ϕp(σ′)(n) = (σ � x)(n).

This is clear for all n < len(σ′). Suppose now the claim
holds for some n with len(σ′) < n < len(σ). By the def-
inition of σ′, we have that for h′ on (σ � x)[n + 1], the
�rst case holds. Thus, using the induction hypothesis, for
ϕp(σ′) on n + 1 we have that the second case holds and
evaluates to (σ � x)(n+ 1) as desired.
Furthermore, for any g, note that h′ on g only changes

its mind when h does, or when alternate data leads to the
same conjecture. However, alternate data can only lead to
the same conjecture in a conformal learner, if the conjec-
ture is not total; in particular, the conjecture cannot be
correct. In other words, once enough data of g is available
such that h has converged to the correct conjecture, this
conjecture will be for a total function, and the second case
in the de�nition of h′ cannot hold any more (which gives
that h′ has also converged). Similarly, it is easy to see
that after the convergence of h to a correct conjecture, all
conjectures of h′ are also correct.
Regarding �τ(Cons)GEx ⊂ GConsEx�, we see that
SSD is trivially GConsEx-learnable. Suppose, by way
of contradiction, SSD is τ(Cons)GEx-learnable, as wit-
nessed by some h ∈ R. By KRT there is e such that, for
all x,

ϕe(x) =


e, if x = 0;

0, else if h(ϕe[x] � 0) 6= h(ϕe[x]);

1, otherwise.

5For notational purposes, we write the argument σ as a subscript

to g.

11



Limits of Computational Learning Timo Kötzing, July 22, 2012

Let g = ϕe. As h is total, g is total; thus, g ∈ SSD. If, for
some x, h(g[x] � 0) = h(g[x]), then we have

ϕh(g[x])(x) = 0 6= 1 = g(x).

Thus, h on g is in�nitely often incorrect (if the last case
of the de�nition of ϕe holds in�nitely often) or h on g
changes in�nitely often its mind, a contradiction.
Regarding �GConsEx ⊆ ItEx�, let S be GConsEx-

learnable as witnessed by h ∈ P. We de�ne an iterative
learner h′ on previous conjecture e and new datum n, y
such that

h′(e, n, y) = h(ϕe[n] � y).

Note that, for all g ∈ S, we have that the conjectures of
h terminate on all inputs less than the length of the data;
thus, h′ on any such g will make exactly the same sequence
of conjectures as h on g. This �nishes the proof for �⊆�.
Regarding �GConsEx 6= ItEx�, let S be such that

S = {g ∈ R | ∃e∀∞n : π1(g(n)) = e ∧ ϕe = g}.

Recall that this is S from Theorem 4.7, and that S is
dense. Clearly, S ∈ ItEx. We now show S 6∈ GConsEx.
Suppose, by way of contradiction, otherwise, as witnessed
by h′ ∈ P. As S is dense, we have h′ ∈ R; furthermore,
also from denseness, h′ is consistent on all inputs, and,
thus, will change its mind on at least one of two inconsis-
tent extensions of any sequence.
By KRT, there is e such that, for all x,

ϕe(x) = µy ∈ {〈e, 0〉, 〈e, 1〉} h(ϕe[x] � y) 6= h(ϕe[x]).

As h has to change its mind on at least one of two exten-
sions, we get that ϕe total; thus, ϕe ∈ S. But of course h′
does not GConsEx-identify ϕe, a contradiction.
Regarding �ItEx ⊂ GEx�, let S be

SFinSup ∪ {g ∈ R | ϕg(0) = g ∧ 0 6∈ range(g)}.

This is GEx-learnable as follows; a learner would conjec-
ture σ(0) for all σ until a 0 appears. From then on, it
switches to a learner for the set of all functions of �nite
support.
Suppose now S ∈ ItEx as witnessed by some h ∈ P.

Fix a program for h. For each σ, we denote with h∗(σ)
the output of h after being fed the elements of σ one after
the other. Note that S is dense, as it contains the set of
functions of �nite support. Thus, h∗ is total.
By KRT, there is e 6= 0 and (σi)i∈N such that, for all

x,

σ0 = e;

∀i : σi+1 = σi � µτ ∈ N∗+ h∗(σi � τ) 6= h∗(σi);

ϕe(x) =
⋃
i∈N

σi.

Suppose �rst ϕe is total. Then ϕe ∈ S, but h does not
ItEx-learn ϕe, a contradiction.

Suppose now ϕe is not total. Then there is i such that
σi is de�ned, but σi+1 is not. Then h

∗(σi �1) = h∗(σi �2).
As both σi � 1 � 0∞ and σi � 2 � 0∞ are in S, but h cannot
distinguish between the two and converges (if at all) to
the same program on both, h fails to identify one of the
two, a contradiction.

Theorem 6.2. We have

(1) ItEx 6⊆ GConfEx; and

(2) GConfEx 6⊆ ItEx.

The proof of this theorem is left as an exercise.

7 Reliability and Prudence

A restriction for Ex-style learning is given by reliable

learning. Intuitively, a learner is reliable if it never con-
verges to an incorrect conjecture, i.e., always changes its
mind after incorrect conjectures. Formally, this is modeled
as follows.

Rel = {(p, g) | ∀n : ϕp(n) 6= g ⇒ ∃m > n : p(m) 6= p(n)}.

A further restriction on learning is prudence. Let I be a
learning criterion. A learner h is said to prudently I-learn
a set S i� there is a set S ′ ⊇ S such that

(1) h I-learns all of S ′; and

(2) for all g ∈ S ′ and p the I-learning sequence of h on g
and all n, ϕp(n) ∈ S ′.

Intuitively, a prudent learner learns such that every hy-
pothesis is a potential target.
For any learning criterion I we let Prud(I) be the set

of sets of functions which can be prudently I-learned.

Theorem 7.1. We have

τ(Cons)GEx ⊂ τ(Rel)GEx ⊂ GEx.

Proof. The inclusion �τ(Cons)GEx ⊆ τ(Rel)GEx� is
trivial. To show the separation, consider the set

S = {g ∈ R | ϕg(0) = g ∧ ∀n : Φg(0)(n) ≤ g(n+ 1)}.

With KRT we see that S 6= ∅. This set can be learnt
reliably as follows. Let h be such that, for all σ 6= ∅,

h(σ) =

{
σ(0), if ∀x < len(σ)− 1 : ϕσ(0)↓σ(x+1)(x) = σ(x);

len(σ), otherwise.

Now suppose, by way of contradiction, that S ∈
τ(Cons)GEx, as witnessed by some learner h. By KRT,
there is e such that, for all x,

ϕe(x) =

{
e, if x = 0;

µy > Φe(x− 1) h(ϕe[x] � y) 6= h(ϕe[x]), otherwise.

12



Limits of Computational Learning Timo Kötzing, July 22, 2012

Using induction, we can now show that ϕe is total, as
h needs to change any inconsistent conjecture (so h can
only not change its conjecture on a single extension of
any sequence). This gives that h cannot learn ϕe ∈ S, a
contradiction.
The inclusion �τ(Rel)GEx ⊆ GEx� is trivial. To show

the separation, we consider SSD. Suppose, by way of con-
tradiction, SSD ∈ τ(Rel)GEx, as witnessed by some func-
tion h. Note that, for any sequence σ, there is a com-
putable function g extending σ which is not equal to ϕh(σ).
Thus, as h is reliable, on g at some time after seeing σ, h
will change its mind. With other words,

∀σ∃τ : h(σ � τ) 6= h(σ). (7)

Using KRT, we get e and (σi)i∈N such that, for all x,

σ0 = e;

∀i : σi+1 = σi � µτ h(σi � τ) 6= h(σi);

ϕe(x) =
⋃
i∈N

σi.

Clearly, from (7), we get ϕe is total; thus, ϕe ∈ SSD. This
is a contradiction, as h does not RelGEx-learn ϕe.

We note at the side that every learner outputting only
total conjectures can be made consistent.

Remark 7.2. We have

τ(T)GEx = τ(TCons)GEx;

GTEx = GTConsEx.

The remark is easily seen patching.

Theorem 7.3. We have

T Prud(GEx) = τ(T)GEx;

Prud(GEx) = GTEx.

Proof. The �rst inclusion comes from the observation
that one can learn all subsets of uniformly computable sets
of functions prudently (and Theorem 4.7), and that any
learner prudent on all input always outputs conjectures
for total functions.
Similarly, we get �⊆� for the second equality.
Let now S ∈ GTEx as witnessed by h ∈ R. Using

Remark 7.2, we suppose that h is consistent on S. Without
loss of generality, ϕh(∅) ∈ S. We de�ne a function f such
that, for all σ,

f(σ) = µt ϕh(σ[t])[len(σ)] = σ.

From h consistent on input from S, we get that f is de�ned
on input from S. We de�ne h′ ∈ R such that, for all σ,

h′(σ) = h(σ[f(σ)]).

With other words, h′ searches through all conjectures that
h would have made on the given input, and outputs the
�rst consistent hypothesis.

Let S ′ = S ∪ {ϕh′(g[t]) | g ∈ S}. We show that S ′
witnesses that h′ prudently learns S. Let g ∈ S ′. In
the case that g ∈ S, we have that there is a minimal t0
such that h(g[t0]) is a program for g. Let t1 ≥ t0 be
such that, for all t′ < t0, the conjecture h(g[t′]) is not
consistent with g[t1] (this has to exist, as g ∈ S and h
is a learner outputting only programs for total functions
on input from S, and as t0 was chosen as the �rst correct
conjecture). Thus, for all t′ > t1, h

′(g[t′]) = h(g[t0]). This
shows that h GEx-learns S. The set {ϕh′(g[t]) | g ∈ S} is
GEx-learned by the de�nition of h′.

Let g ∈ S ′ and let t ∈ N. We need to show that h′(g[t])
is a program for a function in S ′. This is trivial for g ∈ S.
Suppose now g 6∈ S. By the de�nition of S ′, there is
g′ ∈ S such that g = ϕh′(g′[t]). From the de�nition of h′

we see that h′ is consistent (on elements from S), so we
get g′[t] = g[t]. This gives g = ϕh′(g[t]), which shows that
g ∈ S.

8 Learning by Enumeration

In this section, we �rst introduce four variants of decisive
learning, where a learner is forbidden to return to past
conjectures, including two notions of non-U-shaped learn-

ing, where the learner is merely forbidden to return to
previous correct conjectures. In both cases (not returning
to any previous conjecture and not returning to previous
correct conjectures) we distinguish two variants depend-
ing on what it means for a learner to �leave� or �discard�
a conjecture: conjectures can be discarded syntactically
(by outputting a syntactically di�erent conjecture, a mind
change) or semantically (by outputting a semantically dif-
ferent conjecture). We call the �rst variation �strong�.

Formally, we make the de�nitions for decisive, strongly
decisive, non-U-shaped, and strongly non-U-shaped learn-
ing as given in Figure 1. The intuition behind these de�-
nitions is as follows. For decisive learning, any conjecture
�sandwiched� between two equivalent conjectures has to
be equivalent (or even equal) to these conjectures; this
implies any conjectures ever discarded is never returned
to. For non-U-shaped learning, this is restricted to �sand-
wiching� between correct conjectures.

The relation between these four sequence acceptance
criteria (and the no-restriction, P × R) is given by the
following diagram.

13



Limits of Computational Learning Timo Kötzing, July 22, 2012

SDec = {(p, g) | ∀` ≤ m ≤ n : ϕp(`) = ϕp(n) ⇒ p(`) = p(m)};
Dec = {(p, g) | ∀` ≤ m ≤ n : ϕp(`) = ϕp(n) ⇒ ϕp(`) = ϕp(m)};

SNU = {(p, g) | ∀` ≤ m ≤ n : ϕp(`) = g = ϕp(n) ⇒ p(`) = p(m)};
NU = {(p, g) | ∀` ≤ m ≤ n : ϕp(`) = g = ϕp(n) ⇒ ϕp(`) = ϕp(m)}.

Figure 1: Formal de�nition of the sequence acceptance criteria for strongly decisive, decisive, strongly non-U-shaped,
and non-U-shaped learning.

SDec

Dec SNU

NU

P ×R

For GEx-learning, we get the very strong result that
every learner can be assumed strongly decisive, on all pos-
sible input (see Theorem 8.5). However, getting this result
is far from trivial: we need to have an intimate knowledge
about the conjectures we make in order to know when to
discard them, and how not to get back to them.

An easy case is a uniformly computable set of functions
S. Suppose p ∈ R is a list of programs for all and only the
functions in S. On input σ, we can just output p(i) for the
minimal i such that ϕp(i) is consistent with σ. Formally,
we can de�ne a computable acceptability principle A (a
computable binary predicate) such that

A(i, σ)⇔ σ ⊆ ϕp(i). (8)

Then A is computable predicate (in dependence on p).
The learner h ∈ P such that

∀σ : h(σ) = p(µi A(i, σ)) (9)

will then successfully learn all functions for which pro-
grams are listed by p. The learner h is said to learn by

enumeration. But what properties of A does h really need
to learn S? The following items are su�cient, for a given
computable predicate A and a computable p:

(1) For all g ∈ S there is an i such that ϕp(i) = g and
∀t : A(i, g[t]).

(2) For all g ∈ S and i such that ϕp(i) 6= g, ∀∞t :
¬A(i, g[t]).

The �rst item gives the existence of a correct conjecture
that always acceptable; the second item gives the (even-
tual) refutation of all conjectures on inappropriate data.
Formally, we call A an acceptability principle for S using

p i� (1) and (2) above.
The question is now whether we can �nd, for any

S ∈ GEx, an acceptability principle A (using some p).
Formally, we say that a learning criterion I allows for

learning by enumeration i�, for all I-learnable sets S, there
exist p and A such that A is an acceptability principle for
S using p. Why does this help us with decisive learning?
First, we hope that the acceptability principle is mono-

tone, i.e., once it does not accept some conjecture, it will
never return to accepting it � this avoids going back to old
conjectures; but this we can always assume without loss
of generality. Second, we hope that the list p of conjec-
tures is such that, for all i, j, ϕp(i) 6= ϕp(j). This will then
immediately give that the enumeration learner from (9) is
strongly decisive on all input. In particular, such a result
makes a strong characterization ofGEx-learning. The fol-
lowing theorem will lead to such a strong characterization
in Corollary 8.3.

Theorem 8.1. Let S ∈ GEx. The there is p ∈ R and
d ∈ R such that

(1) for all g ∈ S there is i such that ϕp(i) = g; and

(2) for all i, j with i 6= j we have

∃x < d(i, j) : ϕp(i)(x) 6= ϕp(j)(x).6

Proof. Let S ∈ GEx as witnessed by h ∈ P. Without
loss of generality, we can assume that h learns an in�nite
set. Let M be the set of all pairs 〈z, n〉 such that

• for all x ≤ n we have ϕz(x)↓;

• h(ϕz[n]) = z; and

• n = 0 or h(ϕz[n− 1]) 6= h(ϕz[n]).

Note thatM is a computably enumerable set. As h learns
an in�nite set, we have thatM is in�nite. Thus, there is a

6Intuitively, d tells us how far we have to look in order to see that

p(i) and p(j) code di�erent functions; in particular, every function

is listed at most once.

14



Limits of Computational Learning Timo Kötzing, July 22, 2012

1-1 enumeration e ∈ R of all and only the elements in M .
We let z, n ∈ R be such that, for all i, e(i) = 〈z(i), n(i)〉
(i.e., z = π1 ◦ e and n = π2 ◦ e. We de�ne p with s-m-n
such that, for all i and x, ϕp(i)(x) =

ϕz(i)(x), if x < n(i) or, for all y with n(i) < y < x :

ϕz(i)(y)↓ and h(ϕz(i)[y + 1]) = z;

↑, otherwise.

We let d ∈ R be such that, for all i, j,

d(i, j) = max(n(i), n(j)).

We now show that p and d are as desired. Regarding (1),
let g ∈ S. Let t be such that, for all t′ > t, h(g[t′]) =
h(g[t]); and t = 0 or h(g[t]) 6= h(g[t− 1]). This exists as h
GEx-learns g; with s = h(g[t]) we also get ϕs = g. Thus,
there is i such that e(i) = 〈s, t〉. From the de�nition of p
we now get ϕp(i) = g.
Regarding (2), let i, j ∈ N. Without loss of generality,

suppose n(i) ≤ n(j). Suppose that, for all x < d(i, j) =
n(j), we have ϕp(i)(x) = ϕp(j)(x); we will show that i = j.
From the de�nition of p(j) we get that, for all x < n(j),
ϕp(j)(x)↓. In particular, ϕp(i)(n(j))↓ which implies

h(ϕz(i)[n(j)]) = z(i).

From 〈z(j), n(j)〉 ∈M we get

h(ϕz(j)[n(j)]) = z(j).

These two equations together give z(i) = z(j). Further-
more, n(i) < n(j) would imply that h(ϕz(j)[n(j) − 1]) =
z(j), a contradiction to 〈z(j), n(j)〉 ∈M , which then gives
n(i) = n(j) and, from e being 1-1, i = j.

Theorem 8.2. For all S ∈ GEx there are p and A such
that λi ϕp(i) is 1-1 and A is an acceptability principle for
S using p.

Proof. Let S ∈ GEx, and let p and d as in Theorem 8.1.
De�ne A as follows.

A(i, σ)⇔ ¬(∃j ≤ len(σ) : i 6= j ∧ d(i, j) ≤ len(σ) ∧
ϕp(j)[d(i, j)]↓len(σ) = σ[d(i, j)]).

Note that A is computable. We show that A is an accept-
ability principle for S using p. Let g ∈ S. We get that
there is i such that ϕp(i) = g from (1) in Theorem 8.1. Sup-
pose now there is t such that ¬(A(i, g[t])), that is, there
is j 6= i such that d(i, j) ≤ t and ϕp(j)[d(i, j)] = g[d(i, j)]).
This implies ϕp(j)[d(i, j)] = ϕp(i)[d(i, j)], a contradiction
to the choice of d. Thus, we see

∀t : A(i, g[t]),

which shows the �rst requirement for A to be an accept-
ability principle.
Regarding the second requirement, let g ∈ S and i be

such that ϕp(i) 6= g (in particular, i 6= j). Let j be such
that ϕp(j) = g and let t be large enough such that

• j ≤ t;

• d(i, j) ≤ t; and

• ϕp(j)[d(i, j)]↓t.

From this we get, for all t′ ≥ t, ¬A(i, g[t′]) as desired.

The previous two theorems together give us the follow-
ing characterization of GEx-learnability.

Corollary 8.3. A set S ⊆ R isGEx-learnable if and only
if The there is p ∈ R and d ∈ R such that

(1) for all g ∈ S there is i such that ϕp(i) = g; and

(2) for all i, j with i 6= j we have

∃x < d(i, j) : (ϕp(i)(x) 6= ϕp(j)(x)).

From Theorem 8.2 we also get the following corollary.

Corollary 8.4. GEx allows for learning by enumeration.

Theorem 8.5. We have

τ(SDec)GEx = GEx.

Proof. We use the enumeration learner given by Theo-
rem 8.2.

Another popular learning criterion is conservative learn-
ing; for conservative learning, a learner is never allowed to
discard a conjecture while there is no direct evidence that
the conjecture is incorrect, i.e., that the conjecture is in-
consistent. We make the following formal de�nition.

Conv = {(p, g) | p tot. ∧∀i : p(i+1) 6= p(i)⇒ g[i] 6⊆ ϕp(i)}.

As a corollary to the proof of Theorem 8.2, we get the
following.

Corollary 8.6. We have

GConvEx = GEx.

Proof. In the proof of Theorem 8.2 we constructed an
acceptability predicate, which will make sure that no con-
sistent hypotheses are discarded.

We can also give a characterization, similar to that of
Corollary 8.3, for GConsEx-learning.

Theorem 8.7. A set S ⊆ R is GConsEx-learnable if
and only if The there is p ∈ R such that

(1) for all g ∈ S there is i such that ϕp(i) = g; and

(2) for all i, σ such that σ is extensible to a function from
S, we have that σ ⊆ ϕp(i) is decidable.

15



Limits of Computational Learning Timo Kötzing, July 22, 2012

Proof. The direction �⇐� follows by enumeration with
the acceptability principle from (8).

Let S ∈ GConsEx as witnessed by h. We let p be as
in Theorem 8.1. Then we have, for all σ, i, that σ ⊆ ϕp(i)
i�, for all x < len(σ),

(x < n(i) ∧ ϕz(i)(x) = σ(x)) ∨ h(σ[x+ 1]) = z(i).

This is computable as, for all x < n(i), ϕz(i)(x)↓; it is
equivalent to σ ⊆ ϕp(i) as h is consistent (on relevant σ).

9 Other Criteria

The literature contains a wealth of other learning criteria.
We will give two more here. First, one can require a GEx-
learner to converge not to just any description of the input
language, but a minimal one, in accordance with the prin-
ciple of Occam's Razor (stating that one should always go
for the simplest explanation of the available data). As it
turns out, requiring learning of the actually minimal cor-
rect program is then dependent on what hypothesis space
is used (i.e., what machine model is used). With the fol-
lowing de�nition, one can bypass this phenomenon. For
all r ∈ R, let

Mexr = {(p, g) | ∃e ≤ r(minProg(g)) :

∀∞n : p(n) = e ∧ ϕe = g}.7

Intuitively, Mexr allows for a hypothesis �somewhat�
larger than the minimal one, where �somewhat� is de�ned
by r. However, even when allowing very quickly growing
functions r, we cannot achieve the full learning power of
GEx, i.e., ⋃

r∈R
GMexr ⊂ GEx.

A learning criterion that tries to �nd a middle ground
between converging to a single correct conjecture (as in
Ex) or converging to �in�nitely many� correct conjectures
(as in Bc). This learning criterion, named Fex allows
for oscillation between a �nite set of correct conjectures.
Formally, we let

Fex = {(p, g) | ∃D finite : ∀∞n : p(n) ∈ D ∧
∀e ∈ D : ϕe = g}.

Regarding GFex-learning, we get the following result.

Theorem 9.1. We have

GEx = GFex.

Proof. The inclusion �⊆� is trivial. Regarding �⊇�, let
S ∈ GFex as witnessed by h. For all σ, we de�ne D ∈ R
such that

D(σ) = {p | ∃x < len(σ) : p = h(σ[x]) ∧
¬(∃y < len(σ) : ϕp(x)↓len(σ) 6= σ(y))}.

That is, D(σ) lists all the conjectures made by h so far,
for which it has not found an error, a direct inconsistency
so far. Note that, for all g ∈ S, there is t large enough
such that D(g[t]) will contain at least one correct index
for g, all indices do not contradict g, and for larger t, the
set D will not change any more.
We let m ∈ R be a function such that, for all �nite

sets F and all x, if there is e ∈ F such that ϕe(x)↓, then
ϕm(F )(x) = ϕe(x) for the �rst such e found.
From the remarks regarding D it is now clear that

λσ m(D(σ)) will GEx-learn S.

10 Language Learning

In this section we will make a quick exploration of lan-
guage learning. A target to be learned is in this setting
a formal language, a computably enumerable subset of N.
As hypotheses we use natural numbers, where each num-
ber e represents the set

We = dom(ϕe).

It is well known that (We)e∈N is an enumeration of all and
only the computably enumerable sets. There is an e�ective
procedure such that, for each e, the procedure on input e
lists all and only the elements of We, without repetitions.
Learning criteria for language learning are almost the

same as for function learning, with some important di�er-
ences. Learners are still all elements from P; learnees are
computably enumerable L ⊆ N. A learner cannot take in
an in�nite language all at once, so it has to be presented
piece by piece, just as with function learning. However,
for function learning, there was a canonical order in which
to present the data; for language learning, this is a bit
more di�cult. We will consider learning from texts, but
there are other possibilities. A text for a language L is an
in�nite listing of all and only the elements of L, plus, pos-
sibly, the pause symbol #. The pause symbol signals that
no new data is available. This makes the in�nite sequence
of pause symbols the only text for the empty language (all
other languages have pause-free texts).
A learner h successfully learns a language L i� it suc-

cessfully learns L from any text for L (including non-
computable). Learner restrictions and sequence generat-
ing operators work just as in function learning (with the
texts as target functions). The sequence acceptance cri-
teria are a bit di�erent, basically substituting W for ϕ
and any text T is replaced by content(T ), the content of

16



Limits of Computational Learning Timo Kötzing, July 22, 2012

T (all non-# elements listed by T ). For example, Ex for
language learning is de�ned as

Ex = {(p, T ) | ∃e∀∞n : p(n) = e ∧ We = content(T )}.

Another example is consistent learning as follows.

Cons = {(p, T ) | ∀n : content(T [n]) ⊆Wp(n)}.

As a �rst example, note that the set of all �nite lan-
guages is TxtGEx-learnable. However, for any in�nite
language L, the set of L and all �nite subsets of L is not
TxtGBc-learnable.
However, there are some sequence generating operators

for language learning that are not applicable to function
learning. We will introduce set-driven learning and par-
tially set-driven learning below. The idea is that order
in which the data is presented should not matter to the
learner, but only the set of elements of presented data se-
quence (for set-driven learning) or additionally the length
of the sequence of data (for partially set-driven learning).
For a learner h, a text T and all n, we let

Sd(h, T )(n) = h(content(T [n]));

Psd(h, T )(n) = h(content(T [n]), n).

As the �rst theorem about language learning, we show
that set-driven learning is weaker than learning from se-
quences.

Theorem 10.1. We have

TxtSdEx ⊂ TxtGEx.

Proof. The inclusion is trivial; we show the separation
as follows. Let L consist of all languages {〈e, x〉 | x ∈ N}
where ϕe(0)↑ as well as all the �nite sets {〈e, x〉 | x ≤
ϕe(0)} where ϕe(0)↓. This is TxtGEx-learnable by
checking for longer and longer time whether ϕe(0)↓ (out-
putting an index for {〈e, x〉 | x ∈ N} while this did not
converge), and, if convergent, just output and index for
the �nite set of data seen.
Suppose, by way of contradiction, L ∈ TxtSdEx as

witnessed by h ∈ P. By KRT, there is e such that ϕe(0)
equals the �rst m found such that h on {〈e, x〉 | x ≤
m} gives and output e such that We includes an element
outside of {〈e, x〉 | x ≤ m}. With other words, we look
at whether h overgeneralizes, and as soon as it does, we
make it be incorrect.
In the �rst case, ϕe(0)↑, in which case h on the text

〈e, 0〉, 〈e, 1〉. . . for {〈e, x〉 | x ∈ N} will never make a con-
jecture coding an in�nte set, so it cannot correctly identify
{〈e, x〉 | x ∈ N} ∈ L.
In the second case, ϕe(0)↓, in which case {〈e, x〉 | x ≤

ϕe(0)} ∈ L, but h on this (�nite) set makes a hypothesis
including incorrect data, which shows that h does not learn
it.

This shows that L is not TxtSdEx-learnable.

The proof that we have just seen used computational
di�culties of the learner: if the halting problem was decid-
able, then the set would have been learnable. We now get
to a di�erent kind of problem for language learning which
is studied using the notion of a locking sequence. Let L
be a language and h a learner. Then we say that σ is a
locking sequence for h on L i� content(σ) ⊆ L,Wh(σ) = L
and, for all τ with content(τ) ⊆ L, h(σ � τ) = h(σ).
As a major result on language learning we get the fol-

lowing theorem, sometimes called the Locking Lemma.
Its proof is basically an application of König's In�nity

Lemma.

Theorem 10.2. Let h ∈ P, L ∈ TxtGEx(h) and σ a
sequence with content(σ) ⊆ L. Then there is σ′ extending
σ such that σ′ is a locking sequence for h on L.

Proof. Suppose, by way of contradiction, otherwise.
Then we can keep extending σ to a text T for L such
that h on T makes in�nitely many mind changes, a con-
tradiction to L ∈ TxtGEx(h).

A learner h is called order-independent i�, for all lan-
guages L such that there exists a text for L on which h
converges to some e, then, for all texts T for L, h on T
converges to e.

Theorem 10.3. Let L be TxtGEx-learnable. Then
there is a order-independent h such that L ⊆
TxtPsdEx(h).

Proof. Let h0 ∈ P be a TxtGEx-learner for L. Let P be
a computable predicate such that, for all σ, D, t, P (σ,D, t)
is true i�, for all σ′ extending σ with content(σ′) ⊆ D and
len(σ′) < t, h0(σ) = h0(σ′). In a sense, σ′ appears to be a
locking sequence. For given D and t, we let f(D, t) be the
least σ with content(σ) ⊆ D such that P (σ,D, t). Note
that such a σ always exists, as long enough σ's do not have
any extensions of length < t.
We now let h ∈ P be such that, for all D, t, h(D, t) =

h0(f(D, t)). It is now easy to see that, on each text T
for a language L, f on T converges to the least locking
sequence σ0 of h on any text of L. Thus, on any text T
for L, h on T converges to h0(σ0).

References

[BB75] L. Blum and M. Blum. Toward a mathematical
theory of inductive inference. Information and

Control, 28:125�155, 1975.

[Cas74] J. Case. Periodicity in generations of automata.
Mathematical Systems Theory, 8:15�32, 1974.

17



Limits of Computational Learning Timo Kötzing, July 22, 2012

[Gol67] E. Gold. Language identi�cation in the limit.
Information and Control, 10:447�474, 1967.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma.
Systems that Learn: An Introduction to Learn-

ing Theory. MIT Press, Cambridge, Mas-
sachusetts, second edition, 1999.

[RC94] J. Royer and J. Case. Subrecursive Program-

ming Systems: Complexity and Succinctness.
Research monograph in Progress in Theoretical

Computer Science. Birkhäuser Boston, 1994.

[Rog67] H. Rogers. Theory of Recursive Functions and

E�ective Computability. McGraw Hill, New
York, 1967. Reprinted by MIT Press, Cam-
bridge, Massachusetts, 1987.

[Sho01] J.R. Shoen�eld. Recursion Theory. Lecture
notes in logic. A.K. Peters, 2001.

18


