- This problemset has three questions.
- To get the credit for questions marked as SPOJ, you must get them accepted on http://www.spoj.com/AOS, but you don't have to send any explanation!
- For other questions, either send the solutions to gawry1+aos@gmail.com, or leave them in the envelope attached to the doors of my office (room 321).

1. Given two strings s and t, we are interested in computing the length of their longest common substring, which is a string occurring in both s and t. Show how to solve this problem in linear time using the suffix array. You can assume that the lcp array is available, too.
2. Given a permutation on $\{1,2, \ldots, \mathfrak{n}\}$, we want to find a word $w \in \Sigma^{n}$ such that its suffix array $S A_{w}$ is exactly the given permutation.
(a) Show a linear time algorithm solving the problem for $\Sigma=\{a, b\}$.
(b) For extra credit: show a linear time algorithm solving the problem for $\Sigma=\{a, b, \ldots, z\}$.
(SPOJ) 3. Given two strings of length $n, p=p_{1} \ldots p_{n}$ and $q=q_{1} \ldots q_{n}$, define $M(i, j, k)$ as the number of mismatches between $p_{i} \ldots p_{i+k-1}$ and $q_{j} \ldots q_{j+k-1}$ (basically it is a substring Hamming distance). Given an integer K, find the maximum length L such that there exists pair of indices (i, j) for which we have $M(i, j, L) \leq K$.
