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Recap-last time

Comparison trees
Linear decision trees.
Algebraic decision trees.
Today: Algebraic computation trees, Ben-Or’s theorem.

Today: Models of computations part 1: Word-RAM, pointer
machine and indexability.
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Problems we considered last time

Sorting: Given a sequence {x1, · · · , xn} of n distinct numbers,
find the permutation π such that xπ(1) < xπ(2) < · · · < xπ(n).
Convex hull: Given a set of points {p1, · · · , pn} in the plane,
compute their convex hull.
Compute the maximum element in a sequence.
Element uniqueness: Are any two elements of the input set
{x1, · · · , xn} equal?
Set intersection: Given two sets {x1, · · · , xn} and
{y1, · · · , yn}, do they intersect?
3SUM: Do any three elements in the input set {x1, · · · , xn}
sum to zero?
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Models of Computation—word RAM
In general, the closer a model is to a real computer, the harder it is
to prove lower bounds in that model.

The computational model
most geared towards designing algorithms is the unit cost
word-RAM.

Data structure is represented as a RAM, partitioned into
words of w bits each; the words have integer addresses
amongst {0, · · · , 2w − 1}(can store pointers).
Retrieving a word takes constant time.
Any “reasonable” operation (integer addition/division, bitwise
AND, OR, XOR, left/right shifts, comparisons) on words
takes constant time.
w = Ω(log n), where n is the size of the input allows for
storing an index into the data structure in a single word.
Query time: Number of instructions needed to answer a
query.
Space usage: Largest address used.
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Cell probe
We do not want lower bounds to depend on the exact set of
machine instructions available.

The cell-probe model is a less
restrictive version of word-RAM:

Memory of cells, each w bits long, addresses in
{0, · · · , 2w − 1}.
We say data structure uses S cells of space if only cells of
addresses {0, · · · ,S − 1} are used.
Given a query, the data structure probes a number of cells
from memory, and at the end must answer the query.
The cell probed at the next step may be any
deterministic function of the query and the contents of
the previously probed cells.
Thus, all computations on read data are free of charge;
arbitrary instructions allowed.
Query cost: Number of cells probed.
Dynamic—Update cost: the number of cells read/written
when performing an update
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Need for simpler models

The cell probe model is the least restrictive of all lower bound
models proposed in the literature. Thus, lower bounds proved here
are very general.

Unfortunately,...Today we will consider:
Pointer machine model(Tarjan)
Indexability model(Papadimitrou et. al)

It is easier to prove high lower bounds in these models.
Finally we will consider the case when data is too large to fit into
main memory. This is called the external memory model.
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Problem of the day

The main problem we will be concerned is orthogonal range
reporting :

Input: A set of points P = {p1, · · · , pn} in the plane;
pi = (xi , yi ).
Preprocessing phase: Data structure allowed some
time(space) to preprocess P in order to answer...
Query: Given a rectangle [x`, xr ]× [y`, yr ], report all points
that lie inside this rectangle.

We study tradeoffs between space and query time. Usually
space is O(poly(n)), and query is O(poly(log n) + k), where k
is the set of output points.
Problem can be generalized to Rn.
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Status of 2-d Orthogonal range reporting in PMM

Filtering search

Space O(n log n/ log log n), query O(k + log n).
No address manipulations are required.
This factor can be removed in many variants of the
problem—grounded rectangle, fixed aspect ratio, grounded
trapezoid.

In RAM, one can actually achieve same query time with
O(n logε n) space, for any fixed ε > 0.
Is this space/query tradeoff the best possible?
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Definition: Pointer machine model

In a nutshell: No address computation, indivisible storage.

Memory is an unbounded collection of registers.
Each register is a record with a fixed number of data and
pointer fields.
Thus the memory can be modeled as a directed graph with
bounded outdegree.
Increasing the storage by a multiplicative factor(duplicating
nodes), we can assume outdegree is at most 2.
Given {p1, · · · , pn}, a data structure for orthogonal range
reporting is a digraph G = (V ,E ) with a source node σ.
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Definition: Pointer machine model

Each node v has a label, label(v) between 0 and n.
If the label is i , then the node corresponds to point pi . If the
label is 0, then the node is used internally by the data
structure, not to report any point.
Many nodes can be associated with the same point.

Given a query q, the algorithm starts traversing G at σ.
No node can be visited if a node pointing to it has not already
been visited.
Completion cannot occur until each label i such that pi ∈ q
has been encountered at least once.
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Definition: Pointer machine model

Algorithm can modify data and address fields of visited nodes.
Can add new nodes from freelist.
N(v) = {w |(v ,w) ∈ E}. Set W = {σ} initially.

Pick any v ∈W and add N(v) to W .

Request a new node v from the freelist and add it to W .
Initialize N(v) to ∅.
Pick any v ,w ∈W and if |N(v)| < 2, add (v ,w) to E (and v
or w to V , if necessary).
Pick any v ,w ∈W and remove the edge (v ,w) from E if it
exists.

At the end W (q) must contain at least one node
corresponding to each output point in the range q. Query
time is measured as |W (q)|.
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Lower bound for ORR in PMM

Remarks: “Pick any”,

why knowing i is not sufficient.This is a big
difference between RAM and a pointer machine.

Let a, b ∈ R+. G = (V ,E ) is (a, b)-effective if for any query
range q, |W (q)| ≤ a(|P ∩ q|+ logb n).
Main idea to get a lower bound:

Nodes corresponding to output points cannot be too spread
out in the graph, otherwise it would be impossible to get them
in linear time.
Let S = {q1, · · · , qs} be a set of queries, and let α > 0.
S is α-favorable if, for each i , j(i 6= j),
|P ∩ qi | ≥ logα n.
|P ∩ qi ∩ qj | ≤ 1.
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S is α-favorable if, for each i , j(i 6= j),
|P ∩ qi | ≥ logα n.
|P ∩ qi ∩ qj | ≤ 1.
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Main theorem in proving lower bounds in PMM

Theorem
If the data structure is (a, b)-effective and the set of queries is
b-favorable, then

|V | > |S| logb n
216a+4 ,

for n large enough.

Thus the main task is to get a large set of queries, no two of which
share too many points of P...

Proof on board.
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