Efficient Data Structures
Summer 2014
Paweł Gawrychowski
Mayank Goswami
Patrick Nicholson
About the course: Marking, etc.

- This is a 9 credit point course: 2+2

- Prerequisites: Basic course in data structures
 - You *should* know asymptotic analysis ($O, o, \Theta, \Omega, \omega$)
 - You *should* know about linked lists/balanced trees
 - You *should* know at least one programming language
 - ADA DOC ASM AWK BASH BF C C# C++ 4.3.2 C++ 4.0.0–8 C99 strict CLPS CLOJ LISP sbcl LISP clisp D ERL F# FORT GO HASK ICON ICK JAR JAVA JS LUA NEM NICE NODEJS CAML PAS fpc PAS gpc PDF PERL PERL 6 PHP PIKE PS PRLG PYTH 2.7 PYTH 3.2.3 PYTH 3.2.3 n RUBY SCALA SCM guile SCM qobi SED ST TCL TECS TEXT WSPC

- Marking scheme:
 - 60% exam
 - 30% homework sheets (must get 50% on homework)
 - 10% project (research/survey/implementation)
 - Groups of up to 3 people; more details will follow
We will have weekly homework sheets
 ◦ Each homework sheet will have
 • Theory problems (i.e., proofs)
 • Programming problems (at most 20% of homework)
 • These are to be submitted on SPOJ
 • See homework sheet for details

We will also have weekly tutorials
 ◦ Each tutorial review the previous week’s assignment
 ◦ You must actively participate in the tutorial sessions
About the course: Short Outline

- Models of computation
- Implicit Data Structures (Comparison)
 - Membership (Dictionary) Problem, Multikey Search
- Succinct Data Structures (Word–RAM)
 - Static problems: rank/select, trees, graphs, etc.
 - Cell Probe lower bounds for succinct data structures
 - Discussion of dynamic memory models
- Static predecessor searching (Word–RAM)
- Making data structures dynamic
- Persistence and applications (Pointer Machine/Word–RAM)
- Lower bounds (Comparison, Pointer Machine, Cell–probe, etc.)
- Introduction to the External Memory (I/O) Model
 - classic data structures: B–trees, Buffer trees.
- Efficient data structures in external memory
 - Generalizing word–RAM structures to the I/O model
 - Lower bounds on external memory data structures
Let’s get Philosophical

- Why do we do algorithm analysis?
 - What are the goals?
 - Compare different algorithms
 - Determine which algorithm to use in which case
 - What is the end result of the analysis?
 - Input: an algorithm and some input parameters
 - We want a number: lower better than higher

- How do we do the analysis?
 - Computers are very complicated
 - Instead we analyse simpler *models of computation*
There are *many* different models
- Comparison-based, Word-RAM, Cell-Probe, I/O, Pointer machine, Cache-oblivious, etc.

It is important to understand the limitations
- This helps with understanding practicality
- Models often focus on one particular aspect
- We will discuss cases where it can be misleading

Example: Sorting
IMPLICIT DATA STRUCTURES

Summer 2014
Efficient Data Structures
Patrick Nicholson
Why do we care about space efficiency?

Practical reasons:
- In many computations the limiting factor is memory
- The memory hierarchy
- Saving even a small constant factor in space means big money
- Many computing devices often have less memory resources:
 - Smartphones
 - Microcontrollers
 - Sensors
 - Facebook enabled toaster
Why do we care about space efficiency?

Theoretical Reasons:
- Answer fundamental questions about computation:
 - “How much extra space do we need to answer queries about data?”
 - “Can we compress data and still answer questions about it?”
 - “Which types of queries are impossible to efficiently support?”
 - “Are pointers necessary?”
- It is fun 😊
What is the model?

- Basic Idea: data is stored in an array $A[1..n]$
 - The “structure” consists of the order of the data
 - A “pointer” is just an integer in $A[1..n]$

- Only need to know the value n
 - AKA: strict implicit data structure
 - Another option: $O(1)$ extra data allowed

- Only allowed to make comparisons:
 - $a < b, a = b, a > b$

Comments?
Implicit Data Structures

- You probably already know one...

- Heaps perform the following operations:
 - Insert(x): add key x
 - Delete–Min(): delete and return the smallest key
 - Get–Min(): return the smallest key

- Insert(x) and Delete–Min() take $\Theta(\log n)$ time
- Get–Min() takes $\Theta(1)$ time
Binary Heap

- Heap Properties:
 - Complete binary tree except for the last level
 - Each node’s key is at least as small as its children’s
The heap structure is a partial order

- A partial order is a binary relation that is:
 - Reflexive, Antisymmetric, and Transitive
- Think of a directed acyclic graph with/without shortcuts
The heap structure is a partial order
- A partial order is a binary relation that is:
 - Reflexive, Antisymmetric, and Transitive
- Think of a directed acyclic graph with/without shortcuts
The heap structure is a partial order

- A partial order is a binary relation that is:
 - Reflexive,
 - Antisymmetric, and
 - Transitive

Think of a directed acyclic graph with/without shortcuts

A Maximal Chain
The heap structure is a partial order

- A partial order is a binary relation that is:
 - Reflexive, Antisymmetric, and Transitive
- Think of a directed acyclic graph with/without shortcuts

The Maximum Antichain
Let C and A be *maximum* chain and antichain.

Dilworth’s Lemma: Given an arbitrary partial order on n elements the product $|C| \times |A| \geq n$

- $|A| = 7, |C| = 4, n = 13$
 - Seems to check out

Remember this for later!
Back to the Binary Heap

- **Heap Embedding:**
 - Left-child of node $i = 2i$
 - Right-child of node $i = 2i + 1$
 - Parent of $i = \lfloor i/2 \rfloor$
Binary Heap

- Insertion
Binary Heap

- Insertion
Binary Heap

- Insertion
Binary Heap

- Insertion
Binary Heap

- Deletion
Binary Heap

- Deletion
Binary Heap

- Deletion
Binary Heap

- Deletion
Beyond the Heap

- What else can be made implicit?

- Toy Problem: Dynamic Membership
 - Design a data structure that can:
 - Insert(x)
 - Delete(x)
 - Member(x)

- Heap doesn’t work well for member
 - Has very large antichains
Beyond the Heap

- Dynamic Membership
 - Insert(x)
 - Delete(x)
 - Member(x)
 - Heap:
 - Insert $\rightarrow \Theta(\log n)$, Delete $\rightarrow \Theta(n)$, Member $\rightarrow \Theta(n)$
 - Unsorted list:
 - Insert $\rightarrow \Theta(1)$, Delete $\rightarrow \Theta(n)$, Member $\rightarrow \Theta(n)$
 - Sorted list:
 - Insert $\rightarrow \Theta(n)$, Delete $\rightarrow \Theta(n)$, Member $\rightarrow \Theta(\log n)$

- What other trade-offs exist?
Beaps: Biparental Heaps

Beap Properties:

- Partitioned into $\sqrt{2n}$ blocks:
 - i–th block $[i(i + 1)/2 + 1..i(i + 1)/2]$

- k–th element in the j–th block is no larger than the k–th and $(k + 1)$–th in $(j + 1)$–th block
Searching for 17
Beaps: Biparental Heaps

- Searching for 17
Beaps: Biparental Heaps

- Searching for 4
Beaps: Biparenteral Heaps

- Inserting 1
Beaps: Biparental Heaps

- Inserting 1

![Diagram of a binary tree representing Beaps]

- The tree structure illustrates the arrangement of elements in a heap, with each node having at most two children.
Beaps: Biparental Heaps

- Same idea as binary heap for deletion
- All three operations take $\Theta(\sqrt{n})$ time
- Elements stored in fixed partial order
 - Just as in the heap
Beaps: Biparental Heaps

- **Theorem (Munro and Suwanda 1980):** If an implicit data structure containing \(n \) elements carries no structural information other than a fixed partial order on the stored values, then

\[U \cdot S \geq n \]

- \(U \leftarrow \) worst case # of data moves during an update
- \(S \leftarrow \) worst case # of comparisons made during a search
But there is an assumption...

Source: XKCD (http://xkcd.com/1339/), Copyright Randall Munroe (2014), Creative Commons Attribution-NonCommercial 2.5 License.
Rotated Lists

- What about non-partial orders?

- A rotated list: \{7, 11, 13, 14, 1, 4, 5, 6\}
 - Not hard to see that it is possible to modify binary search to find the minimum in the list
 - Caveat: (most) of the elements have to be distinct

- We can do better by using rotated lists
 - But we must make the distinctness assumption!
Basic Rotated List Scheme

- **Data structure:**
 - Keep $\sim \sqrt{2n}$ rotated lists, list i is of length i.
 - Invariant: Elements in list i are smaller than list $i + 1$.

- **Member:**
 - Find two consecutive blocks that straddle query element
 - Search in the smaller block
 - Total cost: $\Theta(\log n)$

- **Insertion:**
 - Find block, insert
 - Swap max to min for each larger block
 - Total cost: $\Theta(\sqrt{n} \log n)$
Extensions to Rotated Lists

- **Munro and Suwanda (1980):**
 - Combine Beap and Rotated List to get
 - $\Theta(n^{1/3}\log n)$ for each operation

- **Fredrickson (1983):**
 - Applied recursion to Rotated Lists to get
 - $\Theta(\log n)$ time for Member(x)
 - $\Theta(n^{\sqrt{2}/\log n}\log^{3/2} n)$ time for Insert(x) and Delete(x)
Fredrickson’s Rotated Lists

Fredrickson considered blocking schemes:
- Partition the array into r blocks $B(1), ..., B(r)$
- There is a function f s.t. $|B(i)| = f(i)$
- The j-th block contains elements $1 + \sum_{i=1}^{j-1} f(i)$ to $\sum_{i=1}^{j} f(i)$
 - The Basic Rotated List Scheme has $f(i) = i$

Data structure idea: *Bootstrapping*
- Sometimes we can plug a data structure into itself
 - Let D_1 have $f(i) = i$ and each block be a rotated list
 - Let D_2 have $f(i) = i^2$ and each block be D_1^*
 - This gives us $\Theta(\log n)$ search, and $\Theta(n^{1.5} \log n)$ updates!
 - Let D_3 have ...
Beyond Rotated Lists

- **Theorem (Munro 1986):** There is an implicit data structure for the membership problem that has worst case $\Theta(\log^2 n)$ time for Member(x), Insert(x), and Delete(x)

- What we really want is an balanced search tree
 - So, let's see if we can make such a tree implicit
Theorem (Munro 1986): There is a data structure for the membership problem that occupies $n + k^2$ array locations, and uses an additional $k + \Theta(n/k)$ pointers, counters, and flags. $\text{Member}(x)$ takes $\Theta(\log n)$ time, and $\text{Insert}(x)$ and $\text{Delete}(x)$ take time $\Theta(k + \log n)$ time.

Invariant #1: AVL node stores k consecutive elements
- A node consists of k locations for elements
 - Also a constant number of pointers, flags, and counters
- We take node sized blocks from the end of the data array
We need some extra mechanism to update

Invariant: 0 to k–1 consecutive elements between AVL nodes

The elements between two nodes are called a *maniple*
We keep pointers to $k - 1$ doubly linked lists
- Each linked list will also consist of nodes
- List i will consist of all maniples of i elements
- Each AVL node stores a pointer to its maniple
We keep pointers to $k - 1$ doubly linked lists
- Each linked list will also consist of nodes
- List i will consist of all maniples of i elements
- Each AVL node stores a pointer to its maniple

Each list node may contain maniples for up to k AVL nodes
- This set of AVL nodes is called the cohort of the list node
 - We keep circular linked lists so we can find all AVL nodes in a cohort
 (Yes, there are a lot of pointers!)
Managing Maniples (Updates)

- Memory Management:
 - When we need a new node, get it from the array
 - New list nodes inserted at the head of the list
 - To delete a maniple, swap contents with head
 - Must update maniple/cohort pointers in process
 - If head underflows, swap with final node in array
 - Overall this requires $\Theta(\log n + k)$ time

- Thus, we can assume the following primitives:
 - PromoteManiple(p, i, x): move maniple pointed to by p, of size i into maniple list $i + 1$, while inserting x into the correct position
 - DemoteManiple(p, i, x): move maniple pointed to by p, of size i into maniple list $i - 1$, and delete x
Performing Operations

- Insert is conceptually very easy:
 - Two cases: both more or less the same
 - Insert into an AVL node → bump max element into maniple
 - OR Insert directly into maniple
 - So, we what we really need is to handle maniple insertion:
 - If the maniple is empty, make a new one in list 1
 - If the maniple is already of size $k-1$, make AVL node
 - Otherwise, we use PromoteManiple

- Deletion is analogous 😊

- Search:
 - In the AVL tree: $\Theta(\log n)$
 - In a node: $\Theta(\log k)$
 - Total: $\Theta(\log n)$
Recall that nodes store k consecutive values:
- We can encode $k/2$ bits in these values!

\[
\begin{array}{cccccccccccc}
2 & 3 & 4 & 5 & 7 & 12 & 13 & 17 & 18 & 20 & 22 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
3 & 2 & 4 & 5 & 12 & 7 & 13 & 17 & 20 & 18 & 29 & 22 \\
\end{array}
\]

- Takes $\Theta(k)$ time to decode/encode a pointer!
 - We will set $k = \log n$ and get $\Theta(\log^2 n)$ time for all ops.
We set $k = c \lceil \log n \rceil$, where c is a big constant
 ◦ e.g., $c = 10$ it will be large enough

Dealing with the cruft:
 ◦ There are $k - 1$ linked lists of maniples
 • Each list can have up to $k - 1$ unused locations
 • Thus, we are wasting $\Theta(k^2)$ locations in total!
 • We store these in the final locations of the array
 • Problem solved with extra pointers

Are we done?
Annoying issue:
- The value of $\lceil \log n \rceil$ will change eventually
- Luckily, there is an easy solution:
 - Keep $\Theta(\log \log n)$ copies of the membership structure
 - Structure i stores 2^{2^i} elements
 - Perform search/updates on all the dictionaries
 - Similar to the rotate list idea for updates
 - We can maintain the running time of $\Theta(\log^2 n)$

The end?
Several improvements since:

- Franceschini et al. (2004):
 - All operations $\Theta(\log^2 n / \log \log n)$

- Franceschini and Grossi (2003, 2006):
 - All operations $\Theta(\log n)$

- Brodal et al. (2012, 2013)
 - Other desirable properties
Next Problem: Multikey Search

- Unlike the last problem, this one will be static

- **Input:**
 - A set of n records, each record has k keys

- **Goal:**
 - Order records for efficient searching using *any* key
Two Key Case: Attempt #1

- Sort the records according to key #1
- Break it up into blocks of size \sqrt{n}
- Sort each block according to key #2

- Search using key #1 takes $\Theta(\sqrt{n})$ time
- Search using key #2 takes $\Theta(\sqrt{n \log n})$ time

- Can we do better?
Two Key Case: Attempt #2

- We store the elements in a BST layout (like the heap)
 - Odd levels: split using key #1
 - Even levels: split using key #2
- What is the running time?
 - \(\Theta(\sqrt{n}) \) for searching under either key
 - If we know \(j \) of \(k \) keys: \(\Theta(\max(n^{1-j/k}, \log n)) \)

This is really a \(kd \)-tree
Kd–trees

- We can also do **orthogonal range reporting**:
 - Time complexity: $\theta(\sqrt{n} + t)$ where t is output size
 - Proof: Consider the number of *cells* that are cut by a horizontal or vertical line...
A Relevant Lower Bound

- Theorem (Alt, Mehlhorn, Munro 1984): Assume all comparisons are required to involve the element for which we are searching. If \(n \) elements can be arranged in an array such that any of \(p \) different permutations of the ascending order may occur, then searching requires \(\Omega(p^{1/n}) \) comparisons.
Consider the following permutation:
\[\pi = (3,2,0,1,4,6,5) \]
as a directed graph:

- A permutation induces a set of *cycles*
 - The length of a cycle is the number of elements

- A permutation which is its own inverse is called an *involution*
 - In an involution, all cycles are of length \(\leq 2 \)
 - Example: \(\pi = (1,0,3,2,5,4,7,6) \) or the bit encoding trick
Consider the following ordering scheme:

- Take the first $n/4$ odd elements and pair them arbitrarily with the last $n/4$ odd elements
 - This admits $(n/4)!$ permutations

- Lower bound says search time should be $\Omega(n^{1/4})$...
 - But we can still search in $\Theta(\log n)$ time if we make comparisons that don’t involve the query element!
Two Key Case: Attempt #3

- We will use the involution trick to show:

- **Theorem (Munro 1987):** The static two-key search problem is solvable in $\Theta(\log^2 n \log \log n)$ time for searching under either key.
Two Key Case: Attempt #3 (2)

- **Feldman’s scheme:**
 - Elements in position $0 \mod 2$ in sorted order
 - Elements in position $1 \mod 2$ permuted

- **Munro’s 2-key scheme:**
 - Start by sorting by key 1
 - Records in $0 \mod \log n$ sorted by key 1
 - Call these 1-guides
 - Conceptually $\log n - 1$ data structures
 - D_i for records in position $i \mod \log n$
 - **Invariant:** $x \in D_i$ straddled by 1-guides

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>12</td>
<td>22</td>
<td>46</td>
<td>17</td>
<td>11</td>
<td>13</td>
<td>33</td>
<td>34</td>
<td>37</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
For each D_i:
- Put first half of the records into second half of array sorted by key 2
For each D_i:
 - Put first half of the records into second half of array sorted by key 2
Two Key Case: Attempt #3 (3)

- For each D_i:
 - Put first half of the records into second half of array sorted by key 2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>12</td>
<td>22</td>
<td>46</td>
<td>17</td>
<td>11</td>
<td>13</td>
<td>33</td>
<td>34</td>
<td>37</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>33</td>
<td>5</td>
<td>7</td>
<td>31</td>
<td>22</td>
<td>14</td>
<td>17</td>
<td>3</td>
<td>12</td>
<td>25</td>
<td>29</td>
<td>9</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>8</td>
<td>22</td>
<td>46</td>
<td>3</td>
<td>37</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>2</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Two Key Case: Attempt #3 (3)

- For each D_i:
 - Put first half of the records into second half of array sorted by key 2
Keep doing this recursively for each D_i:
- Put the first half into the second sorted by key 2
- Put the first quarter into the second sorted by key 2
- Put the first eighth into the second sorted by key 2
- ...
- Stop after $\log \log n + c$ recursive calls for some $c > 0$
- Call the j-th sorted chunk from the right \textit{level} j

$\Theta \left(\frac{n}{\log^2 n} \right)$ records
We now show how to:
- Search among the 1-guides using key 2
- Search among the unsorted portions of \(D_i \) (either key)

Idea that we have seen before:
- Encode pointers in the pairs of records sorted by key 2
- We have \(\Theta(n) \) such records → can encode \(\Theta(n/\log n) \) pointers
- We can use these pointers to encode search trees
Next: how to search using key 2 on the remaining records

- We have $\Theta(\log n)$ data structures
- Each structure has $\Theta(\log \log n)$ levels
- Each level is sorted using key 2
- Overall time: $\Theta(\log^2 n \log \log n)$
Finally: searching using key 1

- The “much more interesting case”
- **Remember (Invariant):** each $y \in D_i$ is straddled by 1-guides
 - Thus, we can determine where the query element x should be
 - That is, we can find a range r of $\log n$ positions (1 per D_i)
- We need to do a binary search within r
 - $\Theta(\log \log n)$ to search r
 - For each D_i we have to track down the correct record
 - How long does this take?
Tracking down elements

- Consider a single D_i
Finally: searching using key 1
- The “much more interesting case”
- **Remember (Invariant):** each \(y \in D_i \) is straddled by 1-guides
 - Thus, we can determine where the query element \(x \) **should** be
 - That is, we can find a range \(r \) of \(\log n \) positions (1 per \(D_i \))
- We need to do a binary search within \(r \)
 - \(\Theta(\log \log n) \) to search \(r \)
 - For each \(D_i \) we have to track down the correct record
 - Tracking down: \(\Theta(\log n) \) moves, each move: \(\Theta(\log n) \) cost

Overall time: \(\Theta(\log^2 n \log \log n) \)
These results all generalize to 3 or more keys

Fiat et al. (1988) essentially settled it:
- With k keys we can search in $\Theta(k \log k \log n)$ time
- This solution is somewhat complicated
 - Basic Idea: select guides using Hall’s Theorem