
Order maintenance problem

Paweł Gawrychowski

30 czerwca 2014

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 1 / 16

An application
Recall that we would like to solve the following problem: preprocess a
collection of rectilinear polygons, so that given any point (x , y), we can
quickly determine the smallest polygon it belongs to.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 2 / 16

An application
Recall that we would like to solve the following problem: preprocess a
collection of rectilinear polygons, so that given any point (x , y), we can
quickly determine the smallest polygon it belongs to.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 2 / 16

An application
Recall that we would like to solve the following problem: preprocess a
collection of rectilinear polygons, so that given any point (x , y), we can
quickly determine the smallest polygon it belongs to.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 2 / 16

An application
Recall that we would like to solve the following problem: preprocess a
collection of rectilinear polygons, so that given any point (x , y), we can
quickly determine the smallest polygon it belongs to.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 2 / 16

An application
Recall that we would like to solve the following problem: preprocess a
collection of rectilinear polygons, so that given any point (x , y), we can
quickly determine the smallest polygon it belongs to.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 2 / 16

An application

Solution
For every essentially different x coordinate store a predecessor
structure with the y coordinates of all intersections with the current line.

By essentially different we mean that some segment begins/ends
there, i.e., the predecessor structure changes as we sweep from left to
right with the current line. To answer an (x , y) query, we just locate the
previous/next x where something changes and then find the
predecessor/successor of y .
Storing a separate predecessor structure for every such x might still be
very space consuming, but maybe the structure don’t have to be
separate? Their large parts will be similar, so we could hope to
somehow share them between different structures.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 3 / 16

An application

Solution
For every essentially different x coordinate store a predecessor
structure with the y coordinates of all intersections with the current line.

By essentially different we mean that some segment begins/ends
there, i.e., the predecessor structure changes as we sweep from left to
right with the current line. To answer an (x , y) query, we just locate the
previous/next x where something changes and then find the
predecessor/successor of y .
Storing a separate predecessor structure for every such x might still be
very space consuming, but maybe the structure don’t have to be
separate? Their large parts will be similar, so we could hope to
somehow share them between different structures.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 3 / 16

An application

Solution
For every essentially different x coordinate store a predecessor
structure with the y coordinates of all intersections with the current line.

By essentially different we mean that some segment begins/ends
there, i.e., the predecessor structure changes as we sweep from left to
right with the current line. To answer an (x , y) query, we just locate the
previous/next x where something changes and then find the
predecessor/successor of y .
Storing a separate predecessor structure for every such x might still be
very space consuming, but maybe the structure don’t have to be
separate? Their large parts will be similar, so we could hope to
somehow share them between different structures.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 3 / 16

Persistence

Say that we have a data structure allowing executing a number of
queries, and performing a number of updates, which change its state.
We would like to implement it so that each update creates a new
version of the structure without destroying the old one.

Partial persistence
Each update creates a new copy of the structure. We can query any
old version, but we can modify only the most recent one.

Full persistence
Each update creates a new copy of the structure. We can query and
modify any version.

All versions of a partially persistent structure create a linear list, and all
versions of a fully persistent structure create a tree called the version
tree.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 4 / 16

Persistence

Say that we have a data structure allowing executing a number of
queries, and performing a number of updates, which change its state.
We would like to implement it so that each update creates a new
version of the structure without destroying the old one.

Partial persistence
Each update creates a new copy of the structure. We can query any
old version, but we can modify only the most recent one.

Full persistence
Each update creates a new copy of the structure. We can query and
modify any version.

All versions of a partially persistent structure create a linear list, and all
versions of a fully persistent structure create a tree called the version
tree.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 4 / 16

Persistence

Say that we have a data structure allowing executing a number of
queries, and performing a number of updates, which change its state.
We would like to implement it so that each update creates a new
version of the structure without destroying the old one.

Partial persistence
Each update creates a new copy of the structure. We can query any
old version, but we can modify only the most recent one.

Full persistence
Each update creates a new copy of the structure. We can query and
modify any version.

All versions of a partially persistent structure create a linear list, and all
versions of a fully persistent structure create a tree called the version
tree.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 4 / 16

Persistence

Say that we have a data structure allowing executing a number of
queries, and performing a number of updates, which change its state.
We would like to implement it so that each update creates a new
version of the structure without destroying the old one.

Partial persistence
Each update creates a new copy of the structure. We can query any
old version, but we can modify only the most recent one.

Full persistence
Each update creates a new copy of the structure. We can query and
modify any version.

All versions of a partially persistent structure create a linear list, and all
versions of a fully persistent structure create a tree called the version
tree.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 4 / 16

Fully persistent stack

We start with a simple example: a fully persistent stack. We want to
implement the following operations:

1 push a new object onto the stack,
2 pop the topmost object from the stack,
3 access the topmost object on the stack.

Every operation should return a pointer to the new version of the
structure. More specifically, every operation takes a pointer to the
version of the structure that we are interested in, and (if it is an update)
returns a pointer to the new version of the structure.
We can implement a stack as a singly-linked list. Each element of the
list is an object and a pointer to the next element. Now it turns out that
we get full persistence for free by just not deleting the elements! See
the blackboard.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 5 / 16

Fully persistent stack

We start with a simple example: a fully persistent stack. We want to
implement the following operations:

1 push a new object onto the stack,
2 pop the topmost object from the stack,
3 access the topmost object on the stack.

Every operation should return a pointer to the new version of the
structure. More specifically, every operation takes a pointer to the
version of the structure that we are interested in, and (if it is an update)
returns a pointer to the new version of the structure.
We can implement a stack as a singly-linked list. Each element of the
list is an object and a pointer to the next element. Now it turns out that
we get full persistence for free by just not deleting the elements! See
the blackboard.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 5 / 16

Fully persistent stack

We start with a simple example: a fully persistent stack. We want to
implement the following operations:

1 push a new object onto the stack,
2 pop the topmost object from the stack,
3 access the topmost object on the stack.

Every operation should return a pointer to the new version of the
structure. More specifically, every operation takes a pointer to the
version of the structure that we are interested in, and (if it is an update)
returns a pointer to the new version of the structure.
We can implement a stack as a singly-linked list. Each element of the
list is an object and a pointer to the next element. Now it turns out that
we get full persistence for free by just not deleting the elements! See
the blackboard.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 5 / 16

Fully persistent stack

We start with a simple example: a fully persistent stack. We want to
implement the following operations:

1 push a new object onto the stack,
2 pop the topmost object from the stack,
3 access the topmost object on the stack.

Every operation should return a pointer to the new version of the
structure. More specifically, every operation takes a pointer to the
version of the structure that we are interested in, and (if it is an update)
returns a pointer to the new version of the structure.
We can implement a stack as a singly-linked list. Each element of the
list is an object and a pointer to the next element. Now it turns out that
we get full persistence for free by just not deleting the elements! See
the blackboard.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 5 / 16

Fully persistent BST
Now we move to a more complex example: a fully persistent balanced
search tree. For the sake of concreteness, choose your favorite
implementation, mine are red-black trees.

Important property of red-black trees
Any update takes O(log n) time, meaning that it starts at the root and
visits a subtree consisting of O(log n) nodes. Only the nodes in the
visited subtree are modified!

Hence after every update, just a small part of the tree changes.
Therefore, instead of modifying the visited nodes, we can clone them,
i.e., create their fresh copies. If a node is visited, but its (say left) child
is not, the left pointer at the clone remains the same. Otherwise it
points to the clone of the left child, see the blackboard.

Any reasonable balanced search tree can be made fully persistent
without increasing the time complexity. The space complexity becomes
as high as the time complexity, though!

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 6 / 16

Fully persistent BST
Now we move to a more complex example: a fully persistent balanced
search tree. For the sake of concreteness, choose your favorite
implementation, mine are red-black trees.

Important property of red-black trees
Any update takes O(log n) time, meaning that it starts at the root and
visits a subtree consisting of O(log n) nodes. Only the nodes in the
visited subtree are modified!

Hence after every update, just a small part of the tree changes.
Therefore, instead of modifying the visited nodes, we can clone them,
i.e., create their fresh copies. If a node is visited, but its (say left) child
is not, the left pointer at the clone remains the same. Otherwise it
points to the clone of the left child, see the blackboard.

Any reasonable balanced search tree can be made fully persistent
without increasing the time complexity. The space complexity becomes
as high as the time complexity, though!

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 6 / 16

Fully persistent BST
Now we move to a more complex example: a fully persistent balanced
search tree. For the sake of concreteness, choose your favorite
implementation, mine are red-black trees.

Important property of red-black trees
Any update takes O(log n) time, meaning that it starts at the root and
visits a subtree consisting of O(log n) nodes. Only the nodes in the
visited subtree are modified!

Hence after every update, just a small part of the tree changes.
Therefore, instead of modifying the visited nodes, we can clone them,
i.e., create their fresh copies. If a node is visited, but its (say left) child
is not, the left pointer at the clone remains the same. Otherwise it
points to the clone of the left child, see the blackboard.

Any reasonable balanced search tree can be made fully persistent
without increasing the time complexity. The space complexity becomes
as high as the time complexity, though!

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 6 / 16

Fully persistent BST
Now we move to a more complex example: a fully persistent balanced
search tree. For the sake of concreteness, choose your favorite
implementation, mine are red-black trees.

Important property of red-black trees
Any update takes O(log n) time, meaning that it starts at the root and
visits a subtree consisting of O(log n) nodes. Only the nodes in the
visited subtree are modified!

Hence after every update, just a small part of the tree changes.
Therefore, instead of modifying the visited nodes, we can clone them,
i.e., create their fresh copies. If a node is visited, but its (say left) child
is not, the left pointer at the clone remains the same. Otherwise it
points to the clone of the left child, see the blackboard.

Any reasonable balanced search tree can be made fully persistent
without increasing the time complexity. The space complexity becomes
as high as the time complexity, though!

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 6 / 16

Generalization

This can be actually generalized to any constant in-degree structure in
the pointer machine model.

Pointer machine model
A structure in the pointer machine model is just a graph. Every node
stores some information (for example, a number) and a constant
number of pointers to other nodes of the graph. Additionally, one node
of the graph is distinguished as the entry.

Driscoll, Sarnak, Sleator, Tarjan 1989
Any constant in-degree structure in the pointer machine model can be
made partially persistent with O(1) amortized multiplicative overhead
in the time complexity and O(1) amortized space per change.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 7 / 16

Persistence in the Word RAM model
So we can efficiently achieve persistence in the pointer machine
model. But we want to work in the Word RAM model! What then?

The main problem is the we need random access, i.e., arrays. This
makes the in- and out-degree of the structure very high, and breaks
the previous idea.

Nevertheless, we can do something. From now on we focus on
implementing a persistent array. As soon as we can do that, we can
make any random access structure persistent.

Partially persistent array
For every cell of the array, we store a list of pairs (timestamp,value).
Modifying a cell is just appending a new pair to its list. Retrieving the
value of a cell is just a predecessor search on its list.

...and we already know how to solve predecessor search REALLY
efficiently, right? So we get O(log log m) time and O(m) space with
dynamic perfect hashing, where m is the number of operations.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 8 / 16

Persistence in the Word RAM model
So we can efficiently achieve persistence in the pointer machine
model. But we want to work in the Word RAM model! What then?

The main problem is the we need random access, i.e., arrays. This
makes the in- and out-degree of the structure very high, and breaks
the previous idea.

Nevertheless, we can do something. From now on we focus on
implementing a persistent array. As soon as we can do that, we can
make any random access structure persistent.

Partially persistent array
For every cell of the array, we store a list of pairs (timestamp,value).
Modifying a cell is just appending a new pair to its list. Retrieving the
value of a cell is just a predecessor search on its list.

...and we already know how to solve predecessor search REALLY
efficiently, right? So we get O(log log m) time and O(m) space with
dynamic perfect hashing, where m is the number of operations.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 8 / 16

Persistence in the Word RAM model
So we can efficiently achieve persistence in the pointer machine
model. But we want to work in the Word RAM model! What then?

The main problem is the we need random access, i.e., arrays. This
makes the in- and out-degree of the structure very high, and breaks
the previous idea.

Nevertheless, we can do something. From now on we focus on
implementing a persistent array. As soon as we can do that, we can
make any random access structure persistent.

Partially persistent array
For every cell of the array, we store a list of pairs (timestamp,value).
Modifying a cell is just appending a new pair to its list. Retrieving the
value of a cell is just a predecessor search on its list.

...and we already know how to solve predecessor search REALLY
efficiently, right? So we get O(log log m) time and O(m) space with
dynamic perfect hashing, where m is the number of operations.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 8 / 16

Persistence in the Word RAM model
So we can efficiently achieve persistence in the pointer machine
model. But we want to work in the Word RAM model! What then?

The main problem is the we need random access, i.e., arrays. This
makes the in- and out-degree of the structure very high, and breaks
the previous idea.

Nevertheless, we can do something. From now on we focus on
implementing a persistent array. As soon as we can do that, we can
make any random access structure persistent.

Partially persistent array
For every cell of the array, we store a list of pairs (timestamp,value).
Modifying a cell is just appending a new pair to its list. Retrieving the
value of a cell is just a predecessor search on its list.

...and we already know how to solve predecessor search REALLY
efficiently, right? So we get O(log log m) time and O(m) space with
dynamic perfect hashing, where m is the number of operations.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 8 / 16

Persistence in the Word RAM model
So we can efficiently achieve persistence in the pointer machine
model. But we want to work in the Word RAM model! What then?

The main problem is the we need random access, i.e., arrays. This
makes the in- and out-degree of the structure very high, and breaks
the previous idea.

Nevertheless, we can do something. From now on we focus on
implementing a persistent array. As soon as we can do that, we can
make any random access structure persistent.

Partially persistent array
For every cell of the array, we store a list of pairs (timestamp,value).
Modifying a cell is just appending a new pair to its list. Retrieving the
value of a cell is just a predecessor search on its list.

...and we already know how to solve predecessor search REALLY
efficiently, right? So we get O(log log m) time and O(m) space with
dynamic perfect hashing, where m is the number of operations.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 8 / 16

Order maintenance problem

To generalize this simple idea to full persistence, we will need the
following tool, which is interesting on its own.

Order maintenance problem
Maintain a list, so that we can:

1 insert x before y into the list,
2 delete x from the list,
3 check if x is before y on the list.

Forget about deletions: we can just pretend that we have done them.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 9 / 16

Order maintenance problem

To generalize this simple idea to full persistence, we will need the
following tool, which is interesting on its own.

Order maintenance problem
Maintain a list, so that we can:

1 insert x before y into the list,
2 delete x from the list,
3 check if x is before y on the list.

Forget about deletions: we can just pretend that we have done them.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 9 / 16

Order maintenance problem

To generalize this simple idea to full persistence, we will need the
following tool, which is interesting on its own.

Order maintenance problem
Maintain a list, so that we can:

1 insert x before y into the list,
2 delete x from the list,
3 check if x is before y on the list.

Forget about deletions: we can just pretend that we have done them.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 9 / 16

First try

Assign real number to the objects. Initially the list contains two
sentinels, assign 0 and 1 to them. Then:

1 to check if x is before y on the list, compare their numbers,
2 to insert x before y , find the predecessor y ′ of y on the list and

assign the average of the numbers of y and y ′ to x .
Does it work?

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 10 / 16

First try

Assign real number to the objects. Initially the list contains two
sentinels, assign 0 and 1 to them. Then:

1 to check if x is before y on the list, compare their numbers,
2 to insert x before y , find the predecessor y ′ of y on the list and

assign the average of the numbers of y and y ′ to x .
Does it work?

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 10 / 16

Second try

Imagine a complete binary tree on M leaves. The elements of the list
reside at some leaves of that tree in the same order as on the list. We
will show how to implement one phase, where a phase begins with
arranging n objects evenly in the leaves, and goes on as long as the
number of object on the list is at most 2n.
Now how to choose M?

1 cannot be too large, because we will store the path from every
object to the root in a single machine word, called its tag.

2 cannot be too small, because otherwise the algorithm breaks.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 11 / 16

Second try

Imagine a complete binary tree on M leaves. The elements of the list
reside at some leaves of that tree in the same order as on the list. We
will show how to implement one phase, where a phase begins with
arranging n objects evenly in the leaves, and goes on as long as the
number of object on the list is at most 2n.
Now how to choose M?

1 cannot be too large, because we will store the path from every
object to the root in a single machine word, called its tag.

2 cannot be too small, because otherwise the algorithm breaks.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 11 / 16

Second try

Density
The density of a node of the binary tree is the ratio of the number of
object in the leaves of its subtree to the number of these leaves.

We want the density of a node at level i to be at most T−i , i.e., the
leaves have density at most 1, their parents have density at most T−1,
and so on, where T ∈ (1,2).
The tree should be large enough so that the density of the root breaks
only when the number of objects becomes 2n. This means that:

T− log M =
2n
M

which solves to M = log 2n
1−log T .

It means that we are using just O(log n) bits for every tag. Good.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 12 / 16

Second try

Density
The density of a node of the binary tree is the ratio of the number of
object in the leaves of its subtree to the number of these leaves.

We want the density of a node at level i to be at most T−i , i.e., the
leaves have density at most 1, their parents have density at most T−1,
and so on, where T ∈ (1,2).
The tree should be large enough so that the density of the root breaks
only when the number of objects becomes 2n. This means that:

T− log M =
2n
M

which solves to M = log 2n
1−log T .

It means that we are using just O(log n) bits for every tag. Good.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 12 / 16

Second try

Density
The density of a node of the binary tree is the ratio of the number of
object in the leaves of its subtree to the number of these leaves.

We want the density of a node at level i to be at most T−i , i.e., the
leaves have density at most 1, their parents have density at most T−1,
and so on, where T ∈ (1,2).
The tree should be large enough so that the density of the root breaks
only when the number of objects becomes 2n. This means that:

T− log M =
2n
M

which solves to M = log 2n
1−log T .

It means that we are using just O(log n) bits for every tag. Good.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 12 / 16

Second try

Density
The density of a node of the binary tree is the ratio of the number of
object in the leaves of its subtree to the number of these leaves.

We want the density of a node at level i to be at most T−i , i.e., the
leaves have density at most 1, their parents have density at most T−1,
and so on, where T ∈ (1,2).
The tree should be large enough so that the density of the root breaks
only when the number of objects becomes 2n. This means that:

T− log M =
2n
M

which solves to M = log 2n
1−log T .

It means that we are using just O(log n) bits for every tag. Good.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 12 / 16

Second try

Now to insert x before y , we locate the predecessor y ′ of y , and put x
in any leaf between y ′ and y .
Well, except when y ′ and y are next to each other in the tree. In such
case, we find the lowest ancestor of y such that the density of its
subtree is below the threshold, and evenly relabel its whole subtree,
including x just before the relabeling happens.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 13 / 16

Second try

Now to insert x before y , we locate the predecessor y ′ of y , and put x
in any leaf between y ′ and y .
Well, except when y ′ and y are next to each other in the tree. In such
case, we find the lowest ancestor of y such that the density of its
subtree is below the threshold, and evenly relabel its whole subtree,
including x just before the relabeling happens.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 13 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Second try

How much time to relabel a subtree rooted at u with 2i leaves? O(2i

T i).
What is the density of the children of u after the relabeling? ≤ 1

T i .
When we relabel u again, what is the density of its child? ≥ 1

T i−1 .
Therefore, between two consecutive relabelings of the same u we
have inserted (1

T i−1 − 1
T i)2i−1 nodes into its subtree.

So we pay O(2i

T i) once per (1
T i−1 − 1

T i)2i−1 insertions, so the amortized
cost is O(1).
Then the amortized cost of an insertion is O(log n), because every
insertion charge O(log n) nodes.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 14 / 16

Final tuning

We want the cost of an insertion to be O(1). This can be achieved with
a standard trick: indirection.

Indirection, again
Split the list into blocks of length log n. Store the first element from
every block using the previous method. Additionally, for every block
use the first naive solution.

This gives amortized O(1) for all operations. Can be made worst-case,
but then it gets really complicated.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 15 / 16

Final tuning

We want the cost of an insertion to be O(1). This can be achieved with
a standard trick: indirection.

Indirection, again
Split the list into blocks of length log n. Store the first element from
every block using the previous method. Additionally, for every block
use the first naive solution.

This gives amortized O(1) for all operations. Can be made worst-case,
but then it gets really complicated.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 15 / 16

Final tuning

We want the cost of an insertion to be O(1). This can be achieved with
a standard trick: indirection.

Indirection, again
Split the list into blocks of length log n. Store the first element from
every block using the previous method. Additionally, for every block
use the first naive solution.

This gives amortized O(1) for all operations. Can be made worst-case,
but then it gets really complicated.

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 15 / 16

Questions?

Paweł Gawrychowski ()Order maintenance problem 30 czerwca 2014 16 / 16

