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Expander Graphs in Computer Science
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The protagonists of today’s lecture are expander graphs, a family of graphs that have
found numerous applications in algorithm design, complexity theory, coding theory, and etc.
Informally, expanders are graphs with low degree and high connectivity. We can use different
ways to define expander graphs. Combinatorically, expanders are highly connected graphs,
and to disconnect a large part of the graph, one has to sever many edges. Geometrically, every
vertex set has a relatively large boundary. From the Probabilistic view, expanders are graphs
whose behavior is “like” random graphs. Algebraically, expanders correspond to a family of
real-symmetric matrix whose first positive eigenvalues of the Laplace operators are bounded
away from zero. Due to these equivalent formulations using different languages, studies on
expander graphs had an impact on many areas in mathematics.

5.1 Preliminaries

We first list a few results from linear algebra.

Definition 5.1 (Eigenvalues, and Eigenvectors). Given a matrix A, a vector x # 0 is defined
to be an eigenvector of A if and only if there is a A € C such that Ax = A\x. In this case, \ is
called an eigenvalue of A.

Theorem 5.2 (Courant-Fischer Formula). Let B be an n by n symmetric matrix with eigen-

values A\ > --- > A\, and corresponding eigenvectors v, ..., Vvy. Then
T
x Bx
A1 = max x'Bx = max =
(Ix||=1 x#0 XIx
iy
x Bx
A2 = max x'Bx = max =
(Ix||=1 x£0 xI'x
x1lvy xlvy
xT'Bx

Ap, = min x'Bx = min —
lIx]|=1 x£0 XTx
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Lemma 5.3. Let ||x||, = (37, ]a:i\p)l/p. Then for any 1 < p < g < o, it holds that

Ixllg < [xllp < n'/P7H7 - x]g.

5.2 Spectra of Graphs

Spectral graph theory views graphs as matrices, and studies the eigenvalues of these matrices.
These eigenvalues are called the spectra of graphs. These eigenvalues reveal basic properties
of graphs (bipartiteness, connectivity, and etc.), and provide bounds of combinatorial quan-
tities of graphs. Through spectral graph theory, we link the study of discrete universe to
continuous ones which allow us to use geometric, analytic and algebraic techniques. More
and more research has shown that eigenvalues play a central role in our fundamental under-
standing of graphs.

Definition 5.4 (adjacency matrix). Let G = (V, E) be an undirected graph with vertex set
[n] £ {1,...,n}. The adjacency matrix of G is an n by n matrix A given by

{ 1 if i and j are adjacent
ivj =

0 otherwise
If G is a multi-graph, then A, ; is the number of edges between vertex i and vertex j.

Adjacency matrices of graphs have the following properties: (1) The sum of elements in
every row/column equals the degree of the corresponding vertex. (2) If G is undirected, then
A is symmetric.

Example 5.5. The adjacency matrix of a triangle is
0 1 1
1 0 1
1 1 0

Definition 5.6 (graph spectrum). Let A be the adjacency matrix of an undirected graph G
with n vertices. Then A has n real eigenvalues, denoted by A1 > --- > \,,. These eigenvalues
associated with their multiplicities compose the spectrum of G.

Lemma 5.7. Let G be any undirected and simple graph with n vertices. Then

?:1 >\7,2 = Z?:l deg(i).
. If A ==\, then E[G] = (.

Ndemaroi=Pu=idegii

Y/ degmax <A< degmax'

VA W N =
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Proof. We only prove the first three items.

(1) Since G has no self-loops, all the diagonal elements of A are zero. Hence ) ' | \; =
tr(A) = Z?:l Am’ = 0.

(2) Note that 31" | A? = tr (AQ) = Y iL, A7, Since A}, is the degree of vertex i, tr(A?)
equals the sum of all vertices’ degrees in G.

(3) Combing > 7" 1 A\; = 0 with \; = --- = \,, we have \; = 0 for every vertex i. By
item (2), we have deg(i) = 0 for every vertex i. Therefore E[G] = 0. O

Example 5.8. Some examples for different spectra of graphs:
e For the complete graph K,, the eigenvalues are n — 1 with multiplicity 1 and —1 with
multiplicity n — 1.

e For the complete bipartite graph K,, ,, the eigenvalues are ++/mn, —/mn and 0 with
multiplicity m +n — 2.
e For the cycle C,, the spectrum is 2 cos(2mj/n) (j =0,1,...,n —1).
Sometimes spectra of graphs give simpler proofs of combinatorial facts of graphs. We look
at the following example.

Lemma 5.9. For any graph G with m edges, the number of cycles of length k in G is bounded
by O (mk/ 2).

Proof. Let A be the adjacency matrix of G with eigenvalues Aq, ..., A,. Then the number of
Cy, (cycles of length k) in G is bounded by tr (Ak> /(2k) = ( "y )\f) /(2k). For any k > 3,
by Lemma 5.3 it holds that

. 1/k . 1/k . 1/2
(ZA?) < (Z;AM) < (Zw?) =(2-m)2.
=1 1=1 =1

Hence tr (Ak) < (2m)*/? and the number of C, is at most O (mk/2). O

In this lecture we only study d-regular and undirected graphs. Note that if G is not undi-
rected, then A is not symmetric anymore and the eigenvalues of A could be complex num-
bers. In addition, we only study d-regular graphs.

Lemma 5.10. Consider any undirected graph G with adjacency matrix A.

1. If G is d-regular, then \y = d and |\;| < dfori=2,...,n.

2. Graph G is connected iff Ao < d, i.e., the eigenvalue d has multiplicity 1. Moreover, the
number of connected components of G equals the multiplicity of eigenvalue d.

3. If G is connected, then G is bipartite iff \,, = —d.

Graph spectra is also closely related to graph isomorphism. It is easy to see that if graphs
G and H are isomorphic, then there is a permutation matrix P such that P - A(G) - PT =
A (H) and hence the matrices A(G) and A (H) are similar. However, there are nonisomorphic
graphs with the same spectrum. See Figure 5.1 for one example.
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Figure 5.1: An example for two graphs which are not isomorphic but have the same spectrum. Their common
graph spectrum is 2,0,0,0, —2.

5.3 Expansion of Graphs

Combinatorial Expansion. For any d-regular graph G = (V, E), let I'(v) be the set of neigh-
bors of v, i.e.,
L(v) = {u| (u,v) € E}.

For any subset S C V, let I'(S) £ U,esI'(v) and TV(S) £ T'(S) U S. Moreoever, for any set
S C V we define 0S £ E(S,S).

Definition 5.11 (vertex expansion). A graph G with n vertices is said to have vertex expan-

sion (K, A) if

RG]

> A.
s:|sl<k [S| T

If K = n/2, then for simplicity we call G an A-expander

Definition 5.12 (edge expansion). The edge expansion of a d-regular graph G = (V, E) is
defined by
0S|
hG) 2 1051
@)= Si<vi/2 d- 18]
To explain edge expansion, let us see two examples. (1) If G is not connected, then there
is one connected component S with |S| < |V]/2. Since |E(S, S)| = 0, we have h(G) = 0. (2)
If G is a complete graph K, then |E(S,S)| = |S| - (n —|S]) and h(G) =~ 1/2.

Spectral Expansioin. One can also define graph expansion by looking at the associated
adjacency matrices. For any d-regular graph with adjacency matrix A, define
!
M= p A

to be the normalized adjacency matrix of graph G. We use \; > --- > )\, to denote the
eigenvalues of matrix M of graph G, and let A = max {|\a], |\, |}. For regular graphs, \; = 1
and we mainly consider the second largest eigenvalue in absolute value. The formal definition
is as follows.

I Definition 5.13 (spectral expansion). The spectral expansion of graph G is defined by \ £
max {| Az, [Anl}.

Relations between Combinatorial and Spectral Expansion. Determining the value of h(G)
is co-NP-hard [6], however spectral expansion is easy to compute. So it is desired to approxi-
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mate combinatorial expansion by using spectral expansion. Here we show several results that
build connections between combinatorial and spectral expansion.

Theorem 5.14 (spectral expansion =- vertex expansion). If G has spectral expansion A,

then for all 0 < o < 1, G has vertex expansion (om, m .

Before showing the proof, we introduce some notations. For any probability distribution
w, the support of 7 is defined by support(7w) = {z : 7, > 0}.

Definition 5.15. Given a probability distribution , the collision probability of = is defined
to be the probability that two independent samples from m are equal, i.e. CP(w) = >, m2.

Lemma 5.16. Let u = (1/n,...,1/n) be the uniform distribution. Then for every probability
distribution = € [0, 1]", we have

1. CP() = ||| = [l — ul]? + 1/n.
2. CP(m) > 1/|support()|.

Proof. (1) We write 7 as # = u + (7 — u) where ul(mw — u). By the Pythagorean theorem it
holds that

CP(m) = [|]|* = [|m — ul|* + [Ju|* = || —u|[® + 1/n.
(2) By Cauchy-Schwarz inequality, we have that

2
1= < Z Tl'w) < |support ()| Zw§
) T

zEsupport(m
and hence CP(m) = 3", w2 > 1/|support(w)|. O

Proof of Theorem 5.14. Let |S| < an. Choose a probability distribution 7 that is uniform on

S and 0 on the S, i.e.
1 1 1
T=|—,—,...,—,0,...,0].
<|5 S| S| )

Note that matrix M is real and symmetric, then M has n orthonormal eigenvectors vy, ..., v,.
We decompose 7 as >_;- ; w; where 7r; is a constant multiplicity of v;. Then CP(w) = 1/|S]|
and by the second statement of Lemma 5.16 it holds that
1 1
CP(Mm) > = .
M) = Fapport (M) ~ IT(9)
On the other hand, by the first statement of Lemma 5.16 we have

(5.1)

1
CP(Mn) — = = |[Mn — u)?
n
= [|[Mu + Mmy + - - - + M, — ul|?
= ||Aomra + - + A7y ||?

<N —u? =\ (cp(n) — i) = \2 <|;‘ — ;) . (5.2)
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Combining (5.1) and (5.2) gives us

1 1 11

= — < CP(M7) — — < N[ = —

TSy n S CPMm -0 < <|S| n>

and
1 S| S|
TSN 2 =7 = =
11y 41 BN L 151~ A2+ (1—A2)-|S
)\2<|S‘ n)+n )\2(1 n)+ + ( ) 1Sl/n

S| _ S|

O]

The following theorem shows that vertex expanders, i.e. graphs with high vertex expan-
sion, are also good spectral expanders. We omit the proof due to space limitation.

Theorem 5.17 (vertex expansion = spectral expansion). Let G be a d-regular graph. For
every § > 0 and d > 0, there exists v > 0 such that if G is a d-regular (1 + §)-expander
according to Definition 5.11, then G has spectral expansion (1 — ). Specifically, we can take
v = Q(62/d).

The following inequality relates edge expansion of graphs to spectral expansion.

Theorem 5.18 (Cheeger’s Inequality). Let G be a d-regular graph and let the eigenvalues of
M(G) be Ay > ... > A\y,. Then

TR (@) < 2 (1 h)

Proof of the easy direction. By the Courant-Fischer Formula (Theorem 5.2), we have that

o o x'x—x"™™Mx 1 (X — %0)?
l—XA= min ————=-- min 5 ,
xeR" x'x d xeR" YouXs
x#0,x 11 x#0,x 11

where u ~ v stands for {u,v} € E(G). Let S C V with |S| < |V|/2 be the subset for which
h(G) is achieved. Let y € R" such thaty, = 1/|S|ifu € S,and —1/|V \ S|ifu € V'\ S. Since
y L 1, it holds that

1 Yunyu =) 1 |ES VS| 1/IS|+1/[V\S])?

R S - A IST+ 1/[V 7\ S|
< 2B, VS| (11814 1/1V\ 5))
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Ramanujan Graphs. All these results between vertex/edge expansion and spectral expan-
sion show that smaller )\ implies better combinatorial expansion. The theorem below gives a
lower bound of the spectral expansion for any d-regular graph.

Theorem 5.19 ([2]). Any infinite family of d-regular graphs {G,, } e has spectral expansion
(as n — o) at least 2v/d — 1/d — o(1).

We call any d-regular graph with spectral expansion at most 2v/d — 1/d a Ramanujan
graph. Friedman [7] proved that random d-regular graphs are close to being Ramanujan in
the sense that \ satisfies

A <2vVd—1/d+2log(d)/d+ o(1),

and it is widely believed that for any fixed d there are infinitely many d-regular Ramanujan
graphs. However, constructing families of Ramanujan graphs with arbitrary degrees is one
of the major open problems in spectral graph theory. So far, we only know constructions of
Ramanujan graphs with certain degrees and these constructions are based on deep algebraic
knowledge. See [10] for example. Another important problem is to find a combinatorial
construction of Ramanujan graphs.

5.4 Expander Graphs

Definition 5.20 (expander graphs). Let d € N. A sequence of d-regular graphs {G;}ien of
size increasing with i is a family of expander graphs if there is a constant £ > 0 such that
h(G;) > ¢ for all i.

Two general problems are existence and constructibility of expander graphs. Between these
two problems, existential proofs of expanders are easier, and one can resort to probabilistic
techniques. Moreover, the existence of expanders can be often used as a black-box to show the
existence of other interesting combinatorial objects. On the other hand, many applications
of expanders need explicit constructions. We will mention some explicit constructions in this
lecture, but they do not always match the bounds from the existential proofs.

Proof of Existence. The following lemma shows the existence of expanders.

Theorem 5.21. Let Gy v be the family of bipartite graphs with bipartite sets L, R of size N
and left degree d. For any d, there exists an «(d) > 0, such that for all N it holds that

Pr[Gisan (aN,d — 2)-expander | > 1/2,

where G is chosen uniformly from G4 n.

Proof. Define
pr=Pr[3SCL:|S|=k|[(S) < (d—2)|9|].

So G is not an (aN, d — 2)-expander iff >~ pi > 0.
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Assume that there is a set S of size K and |I'(S)| < (d — 2)|S|. Then there are at least 2k
repeats among all the neighbors of vertices in .S. We calculate the probability

2k
Pr [ at least 2k repeats among all the neighbors of vertices in S| < (g:) (ﬁ) .

Therefore

k
N ) (5.3)

where ¢ = 3. By setting a = 1/(cd*) and k < aN, we know that p;, < 4~* and

aN aN
Pr[Gisnotan (aN,d — 2)-expander] < ) "p, < Y 47% <1/2. O
k=1 k=1

Constructions of Expanders. While it is easy to prove the existence of expander graphs,
explicit constructions are much harder. We say that a family of expander graphs {G), },en is
explicit if there is a polynomial-time algorithm that on input 1™ outputs the adjacency matrix
of G,,. We say that the family is strongly explicit if there is a polynomial-time algorithm that
on input n, u, i, outputs the index of the ith neighbor of vertex u. Note that in the strongly
explicit case, the lengths of the algorithm’s inputs and outputs are O(logn) and hence its
runtime is O(poly logn).

Example 5.22. Let p be a prime number. A 3-regular expander graph with p vertices can be
generated as follows: Let G = (Z,, E). For any vertex x € Zj, vertex x is connected to x+1,x —1
and z~!, where the inverse of 0 is defined to be 0.

The proof that this 3-regular graph is an expander is based on deep results from Number
Theory: Selberg 3/16 theorem. This graph is not strongly explicit, since there is no efficient
method to generate large prime numbers deterministically.

Example 5.23 ([11]). Fix a positive integer M and let [M] = {1,2,--- , M }. Define the bipar-
tite graph G = (V, E) as follows. Let V = [M]? U [M]?, where vertices in the first partite set are
denoted by (x,y)1 and vertices in the second partite set are denoted by (z,y)s. From each vertex
(z,y)1, put in edges

(@, y)2, (2 +y)2, (T, x +y + 1)2, (T +y,y)2, (+y+ 1,y)2,
where all arithmetic is done modulo M. Then G is an expander graph.

Example 5.24 ([9]). Let G = (LUR, E) be the graph described above, then VX C L, |I'(X)| >
| X|(1 + do| X|/n), where dy = (2 — v/3)/4 is the optimal constant.



5.5. Expander Mixing Lemma 9

5.5 Expander Mixing Lemma

Consider two experiments on a d-regular graph G. (1) Pick a random vertex v € V' and then
pick one of its neighbors v. (2) Pick two random vertices u,v € V randomly and indepen-
dently from V' x V. What is the probability of the event (u,v) € S x T, S,T C V for these
two experiments? For the first event, the probability is |E(.S,T")|/(nd). The probability for the
second event is u(S) - u(T), where u(S) £ |S|/n is the density of set S.

For the random bits used in these two experiments, the first experiment uses logn + log d
random bits and the second one uses 2logn random bits. However, we will show that for
graphs with good expansion these two probabilities are quite close to each other.

Lemma 5.25 (Expander Mixing Lemma, [3]). Let G = (V, E) be a d-regular n-vertex graph
with spectral expansion \. Then for any subset S, T C V, we have

[E(S,T)| =

4L D) < o0 5T

We look at the two terms in the left side: the size of E(S,T') is the number of edges
between two sets, and d|S| - |T'|/n is the expected number of edges between S and 7 in a
random graph with edge density d/n. So smaller \ implies that G is “more” random.

Proof. Let 1g,17 be the characteristic vectors of S and T. Expand these vectors in the or-
thonormal basis of eigenvectors vi,--- ,v, of A,i.e. 13 =5, a;v;, and 17 = Y, 5;v;. Then
we can write |E(S,T)| as

|E(S,T)| =15 - A 17 = (Z am) A (Z &vi) =Y b,

where \;s are eigenvalues of A. Since a; = (1g, ﬁ> = %, p1 = % and \; = d, we have

B(S,T)| =d +ZAZ B

Thus
A5 <ZA1 Bi<A-d. Zlazﬁl

‘!E(&T)I

By Cauchy-Schwartz inequality, we have that

S Ml - (1]l = A-d /IS |T]. 0

d|S||T
‘|E<S,T>\'A"

Lemma 5.26 (Converse of the Expander Mixing Lemma, [5]). Let G be a d-regular graph
and suppose that

A5 < oa s

’IE(S, )| -
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I holds for every two disjoint sets S, T and for some positive 6. Then A = O(6(1 + log(d/9))).

Corollary 5.27. Let G be a d-regular graph with n vertices and spectral expansion \. Then
the size of the independent set of G is at most \n.

Proof. Let T = S. By Expander Mixing Lemma, we get |S| < An. O

Corollary 5.28. Let G be a d-regular graph with n vertices and spectral expansion \. Then
the chromatic number x(G) > 1/

Proof Let ¢ : V — {1,...,k} be a coloring of G. Then for every 1 < i < k, ¢~!(i) is an
independent set. Since the size of every independent set is at most An, so the chromatic
number is at least 1/)\. O

5.6 Random Walks on Graphs

We now focus on random walks on graphs. We assume G = (V, E) is an undirected, un-
weighted and connected graph which is also d-regular. Recall that M = é-A is the normalized
adjacency matrix which will be transition matrix of the random walk on G.

Lemma 5.29. Let M be any symmetric transition matrix. Then for any probability vector x,
it holds that
], <

where w = (1/n,...,1/n) is the uniform vector and A\ = max{|\z|, |\,|}. In particular, for
t = O(logn/log(1/X)) = O(logn/(1 — \)), it holds that

ie., forallu,v € V, M, € .4 2.1y

Proof. Since M is a real and symmetric matrix, M has n orthogonal eigenvectors vy, ..., vy.
Let x be any starting probability distribution on the vertices of G. Then we can decompose
x uniquely as >_7* ; a;v;. Since x is a probability vector and all v; (i > 2) are orthogonal to
m = (1/n,...,1/n), it follows that a; = 1. Then,

2 2 2

n
[Mx — =||* = HM (Z a,-vi) -7
i=1

n
T+ Z QiNV; — T
=2

n
> aidivi
i=2

n
§ Q;V;

=2

n
o divil* < A2 flagvi]|? = A2
i—2

NE

7

[\

o

2
= A7l — =7
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Taking square roots yields

IMx — 7| < Aflx — =
By induction for any ¢ > 1 it holds that

HMtX - 7rH = HM(Mt_lx) - ﬂ'H <A HMt_lx - 71'” < <A lx =]
Finally,
[ M = ]| < Xl e <Al < A ]y = A

where in the first inequality we used the fact that

e = 7el5 + I3 = [1xI3

since x — 7 and 7 are orthogonal, which immediately implies ||x — 7 || < ||x]|.
Hence |M'm — ul| < 3, whent = O (M) =0 (%) To see the last step, we

2> Tog(1/X)
note that
log(l4+z) =1 ! +0 !
0 r)=1— —— [
& 1tz 1+
by taking the Taylor expansion of both sides. O

5.7 Probability Amplification by Random Walks on Expanders

Suppose we run a randomized sampling algorithm for which there is an unknown (bad) set
B C V for which the algorithm cannot solve the problem. For instance, V' could describe all
possible choices for the (random) bits the algorithm could use. Then after ¢ repetitions of
the algorithm we find the correct answer if and only if at least one sample lies outside B.
While an obvious way to amplify the success probability is to generate ¢ independent samples,
there is a more clever and somewhat surprising solution. One performs a ¢-step random walk
with a random starting vertex on an expander graph with vertex set V. Despite the large
dependencies among two consecutive vertices, it turns out that the probability for a random
walk to hit at least one vertex outside B is very close to the probability that we have when
we sample all ¢ vertices independently from V. See Figure 5.2 for an illustration.

Theorem 5.30 ([1, 4]). Let G be a d-regular graph with n vertices and spectral expansion .
Let B C V with |B| = n. Then,

Pr [B] £ Pr|all t steps of a random walk stays entirely in B] < (8 + \)".

We define a matrix P by P, , = 1 if u = v € B, and P,,, = 0 otherwise.
Lemma 5.31. Let w = (1/n,...,1/n) be the uniform vector. Then,

Pr[B] = H(PM)’waH1
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Figure 5.2: Illustration of independent samples and the corresponding random walk. Set B represents the set of
“bad” inputs that we want to avoid.

Proof. Note that P gives a vector which is 1/n at components corresponding to vertices in
B and 0 otherwise. Moreover, M, , is the probability for a random walk in G starting from u
to be located at v at step t. Since P is a projection matrix, it follows that

[(PM)tPn]u == [(PM)tL“U [P,

weV ’

= Z [(PM)t}uw “lyen - %
weV ’

1

=) —|(PM)

wEB n { }w,u
Hence the claim of the lemma follows. O

Lemma 5.32. For any probability vector v € R", it holds that

[PMPvlls < (6 +A) - [[v]]2.

Proof. We first note that we can assume that Pv = v. Otherwise, we replace v by Pv which
does not change the left-hand-side, and can only make the right-hand-side smaller. For the
same reason, we can also assume that v is non-negative and by scaling, we may also assume
that Y, v; = 1.

Hence, we can express v as follows:

Pv=v=m+az,
where z = v — 7 is orthogonal to 7. With this, we obtain
PMPv = PMv = PM~ + PMz = P + PMz,
and thus
IPMPv], < [P, + [PMall, . (5.4)

We now bound these two terms on the right-hand side separately. By Cauchy-Schwartz in-
equality we have

L= vi=Y licg -vi < V/Bn- ||
i i
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Since |Pul|2 = ///n, it follows that
[Puffz < 5 - [lv]l2.

For the other summand, recall that z is orthogonal to . Hence, z = }_;", ¢;v; where v;
is the ith eigenvector of M. Since P is a projection, we have that

n n
> cidivi > civi
i=2

i=2
where the last inequality holds since v = 7 + z and z is orthogonal to 7. Hence,

[PMz||, <|[Mz]2 < <A = A-zllz < A- vl

2

2

l2* + |7)* = v = | + ||| * = [|v]|*
Plugging in the two inequalities in (5.4) yields the lemma. O
Proof of Theorem 5.30. By combining Lemma 5.31 and Lemma 5.32, we have that
Jemyen], < v [@sareal,
- Vi |@aae,
<V (BNl = (B
O

There are various extensions of Theorem 5.30. For instance, we may only consider a
subset of the time-steps in {1,...,¢}, or the case that the set to be avoided changes over
time. We refer to [3] for further details and the references therein.

Let us now apply Theorem 5.30 for a probabilistic algorithm A for the language L € RP
(the class of problems with one-sided error).

Complexity Class RP. The complexity class RP consists of all languages L for which there
exists a polynomial-time randomized algorithm A such that

x€L=Pr[A(z)=1]> T
¢ L=Pr[A(z)=1]=0

To decide whether a given input z is in L, the algorithm A samples a random string
r € {0,1}* of length ¢ and computes in polynomial time a boolean function A(x,r). If z ¢ L,
then A(x,r) =0 for all r. If z € L, then the probability (over r) that A(z,r) = 0 is at most S.

Now take a graph G = (V, F) with V = {0, 1}* which has spectral expansion at least \
and suppose that \ is sufficiently smaller than  which is the error of the given algorithm.
Then the new algorithm A based on random walks is defined as follows:

(1) Pick a vertex ug € V uniformly at random.
(2) Perform a random walk X, X1, ..., X; of length ¢.
(3) Return Vf:o A(z,v;).
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By definition of RP, we only need to consider the case where x € L. By Theorem 5.30,
Pr | Afails | <Pr[Vi: X; € B] < (8+)),

which is at most 2-*) assuming that X is a constant smaller than < 3/4. Adjusting the
constants, we conclude that the error probability is at most 47 if we use k + O(t) - log(d)
random bits.

Algorithm Error Probability | Random Bits
Rand. Algorithm 1/4 k
t Repetitions (1/4) tok
t-step Random Walk (1/4) k+ O(t) - log(d)

Figure 5.3: Comparison of the methods for probability amplification. If k is a sufficiently large constant, then
for any value of ¢, the ¢-step random walk algorithm requires less random bits for achieving the same error
probability as the ¢-repetitions.
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