
Beyond classical chip design
lecture 2

Self-stabilization (continued)

Further Reading

Dijkstra, Edsger W.: Self-stabilization in spite of distributed
control. Selected writings on computing: a personal
perspective. Springer New York, 1982. 41-46.

Brown, Geoffrey M., Mohamed G. Gouda, and Chuan-Lin Wu:
Token systems that self-stabilize. Computers, IEEE
Transactions on 38.6 (1989): 845-852.

What we had...

Algorithm:

 ... enabled = non-trivial transition

 ... token

What we wanted...

Algorithm:

 3 states,

 uniform,

 very simple predicate and transition function

 ->

 But wait...

 ...

Generally...

Stable transition functions:

 i can make a transition to c at time &

 i cannot make a transition to c at time
->

 i made a transition at time

 (and thus is in c at time)

Generally...

“distributed schedule”

stable + distributed schedule ->

“linearizable to” schedule [later]

Reliable designs

Reliable designs

Fault-tolerance.

Self-stabilization.

Robustness...

Robustness...

 ... no mutex.

Self-stabilization

For all initial states, all executions from this
state: exists a time T:

 T-postfix fulfils requirements.

Exists a time T: for all initial states, all executions
from this state:

 T-postfix fulfils requirements.

Example problem

Token passing system.

Example problem

Token passing system.

Example problem

Token passing system.

Example problem

Token passing system.

Example problem

Token passing system.

Self-stabilization

“equal speeds are bad”

Self-stabilization

“equal speeds are bad”

Solution 1. Randomness.

- implementation

- fault-free behavior

Self-stabilization

“equal speeds are bad”

Solution 1. Randomness.

- implementation

- fault-free behavior

But: ... no token case!

Self-stabilization

Uniform deterministic solutions for all ring sizes?

Self-stabilization

Uniform deterministic solutions for all ring sizes?

Self-stabilization

Uniform deterministic solutions for all ring sizes?

Self-stabilization

Uniform deterministic solutions for all ring sizes?

Double -> contradiction

Self-stabilization

Solution 2. Dijkstra (det, non-uniform, uses size)

machine 0:

all others (1..N):

N “other“ nodes

N+1 states from

-> say, state N does not occur.

Self-stabilization

Obs 1. node 0 first one to have N.

Obs 2. from N(non-N)....(non-N) eventually
reach N...N.

Obs 3. from N...N only 1 execution with mutex &
weak fairness.

Self-stabilization

Prop 1. Show

Assume not.

-> 0 makes bounded # non-trivial steps

-> last at time with

-> eventually

-> eventually 0 makes step

-> contr.

Self-stabilization

 ->

 : “mod N” instead of “mod N+1”?

Not with distributed scheduler. [hw]

Self-stabilization

not stable, but:

 - works with distributed scheduler

 - for all ring sizes exists solution

Self-stabilization

Solution 3. [Brown, Gouda]

not stable <-> two neighbours try to make a step
at the same time

Self-stabilization

Prop 1. neighbour-mutex holds.

Self-stabilization

link-reversal e.g. full/partial reversal

Self-stabilization

...

Ring cut...

Prop 2. No deadlock. [hw]

Prop 3. Weak fairness. [hw]

Self-stabilization

... link reversal gives a neighbour-mutex, weak
fair scheduler.

What we obtain...

distributed scheduler

LR

potentially unstable algorithm

Distributed, weak-fair scheduler ->

Distributed, neighbour-mutex, weak fair scheduler.

Simulating scheduler

Dijkstra‘s algorithm

distributed scheduler

