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Self-stabilization (continued) 



Further Reading 

Dijkstra, Edsger W.: Self-stabilization in spite of distributed 
control. Selected writings on computing: a personal 
perspective. Springer New York, 1982. 41-46. 

 

Brown, Geoffrey M., Mohamed G. Gouda, and Chuan-Lin Wu: 
Token systems that self-stabilize. Computers, IEEE 
Transactions on 38.6 (1989): 845-852. 

 



What we had... 

Algorithm: 

  ... enabled = non-trivial transition 

  ... token 

 



What we wanted... 

Algorithm: 

 3 states, 

 uniform, 

 very simple predicate and transition function 

 -> 

 

 But wait... 

  ...  

 



Generally... 

Stable transition functions: 

  i can make a transition to c at time    & 

  i cannot make a transition to c at time              
-> 

  i made a transition at time 

  (and thus is in c at time           ) 

 



Generally... 

“distributed schedule” 

 

stable + distributed schedule -> 

“linearizable to” schedule [later]  



Reliable designs 



Reliable designs 

Fault-tolerance. 

 

 

 

Self-stabilization. 

 

 

 

 



Robustness... 

 

  



Robustness... 

 

  

 ... no mutex. 



Self-stabilization 

For all initial states, all executions from this 
state: exists a time T: 

 T-postfix fulfils requirements. 

 

Exists a time T: for all initial states, all executions 
from this state: 

 T-postfix fulfils requirements. 

 



Example problem 

Token passing system. 
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Token passing system. 

 

 

 

 



Example problem 

Token passing system. 

 

 

 

 



Example problem 

Token passing system. 

 

 

 

 



Example problem 

Token passing system. 

 

 

 

 



Self-stabilization 

“equal speeds are bad” 

 



Self-stabilization 

“equal speeds are bad” 

 

Solution 1. Randomness. 

- implementation 

- fault-free behavior 

 



Self-stabilization 

“equal speeds are bad” 

 

Solution 1. Randomness. 

- implementation 

- fault-free behavior 

 

But: ... no token case! 

 

 



Self-stabilization 

Uniform deterministic solutions for all ring sizes? 

 



Self-stabilization 

Uniform deterministic solutions for all ring sizes? 

 



Self-stabilization 

Uniform deterministic solutions for all ring sizes? 

 



Self-stabilization 

Uniform deterministic solutions for all ring sizes? 

 

 

 

 

 

 

Double -> contradiction 

 



Self-stabilization 

Solution 2. Dijkstra (det, non-uniform, uses size) 

 

machine 0: 

 

all others (1..N): 

 

 



N “other“ nodes 

N+1 states from  

 

-> say, state N does not occur. 

 

Self-stabilization 



Obs 1. node 0 first one to have N. 

 

Obs 2. from N(non-N)....(non-N) eventually 
reach N...N. 

 

Obs 3. from N...N only 1 execution with mutex & 
weak fairness.  

 

Self-stabilization 



Prop 1. Show 

Assume not. 

-> 0 makes bounded # non-trivial steps 

-> last at time     with 

-> eventually 

-> eventually 0 makes step 

-> contr.  

Self-stabilization 



         

       -> 

 

  : “mod N” instead of “mod N+1”? 

Not with distributed scheduler. [hw] 

Self-stabilization 



not stable, but: 

 - works with distributed scheduler 

 - for all ring sizes exists solution 

Self-stabilization 



Solution 3. [Brown, Gouda] 

 

not stable <-> two neighbours try to make a step 
at the same time 

 

 

Self-stabilization 



 

 

 

 

Prop 1. neighbour-mutex holds. 

 

Self-stabilization 



link-reversal e.g. full/partial reversal 

 

 

 

 

 

Self-stabilization 

... 



Ring cut... 

 

Prop 2. No deadlock. [hw] 

 

Prop 3. Weak fairness. [hw] 

 

 

 

 

 

Self-stabilization 



... link reversal gives a neighbour-mutex, weak 
fair scheduler. 

 

 

 

 

 

What we obtain... 

distributed scheduler 

LR 

potentially unstable algorithm 



Distributed, weak-fair scheduler -> 

Distributed, neighbour-mutex, weak fair scheduler. 

 

 

 

 

 

Simulating scheduler 

Dijkstra‘s algorithm 

distributed scheduler 


