Beyond classical chip design lecture 3

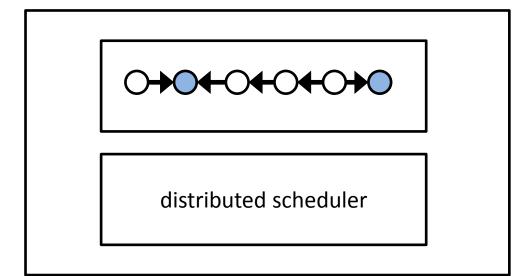
Self-stabilization (continued)

What we had...

Distributed, weak-fair scheduler ->

Distributed, neighbour-mutex, weak fair scheduler.

Dijkstra's algorithm



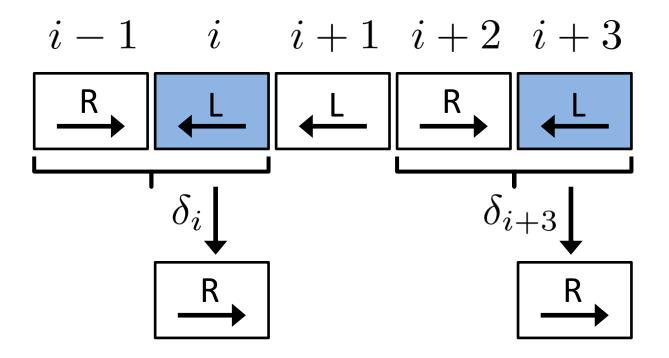
... link reversal almost solves the problem.

token merging

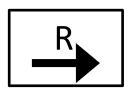
LR

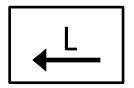
distributed schedule

stable algorithm



adding direction



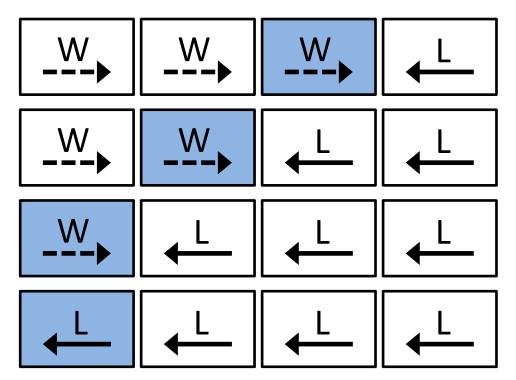


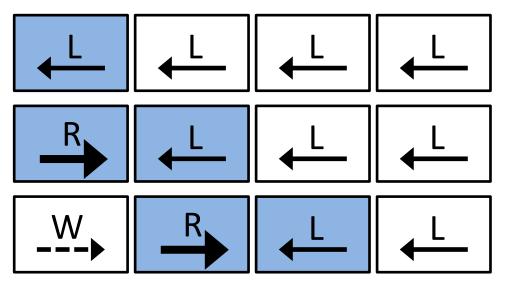
tokens turn only at borders ->

Prop 1. Mutex holds.

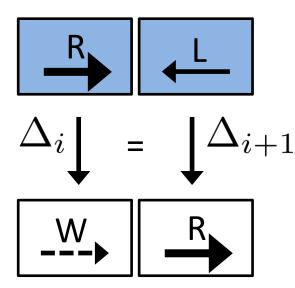
Prop 2. Weak fairness holds.

to left ...

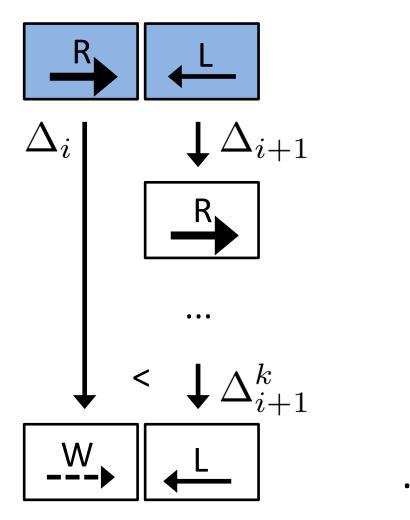




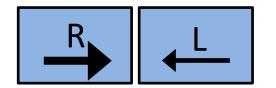
... well



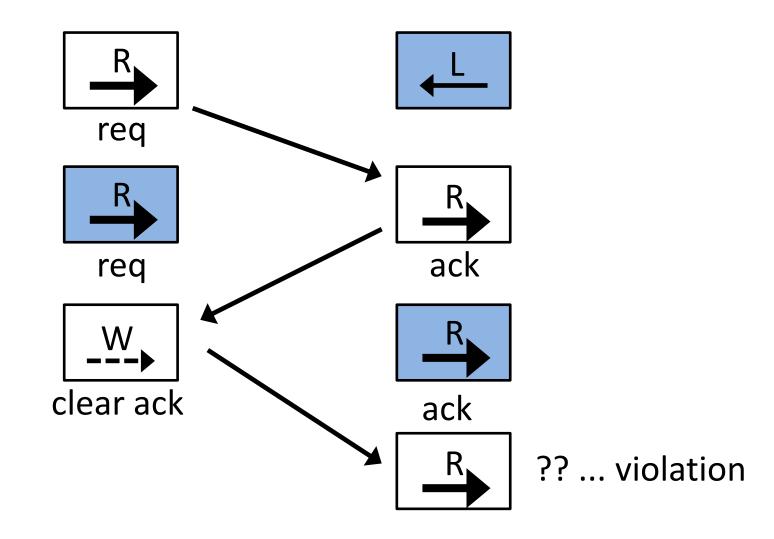
requires simultaneity: two sided constraint!

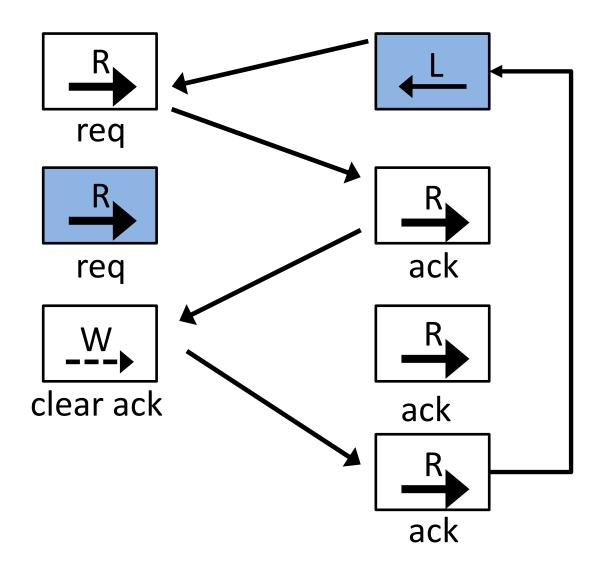


... one sided



L ... without timing?





Beyond classical circuit design lecture 3.5

Circuit model

Further Reading

Alain J. Martin: *Synthesis of Asynchronous VLSI Circuits.* Tech report California Institute of Technology, 1991.

Alain J. Martin and Mika Nyström: *Asynchronous techniques for system-on-chip design.* Proceedings of the IEEE Volume 94, Issue 6:1089 - 1120, June 2006.

Binary, event based model

here [Alain Martin]:

low-level: production rules.

high-level: communicating hardware processes.

Low-level Specifications

Production rules

Production rules

variable/port: from a finite alphabet V
transition: variable + up/down
production rule: Boolean guard -> transition

$$\begin{array}{l} x \wedge y \to z \uparrow \\ \neg (x \wedge y) \to z \downarrow \end{array}$$

Production rules

 $x \wedge y \to z \uparrow$ $\neg (x \wedge y) \to z \downarrow$

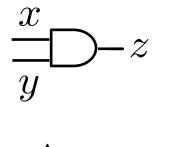
typically rule-pairs

non-interference: per rule-pair $\neg(Bu \land Bd)$ **no self-reference**: per rule

Gate

gate = rule-pair

combinational (NOT, 2AND, 2OR, AOIs, ...) $Bu \leftrightarrow \neg Bd$



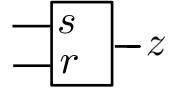
 $\begin{aligned} x \wedge y \to z \uparrow \\ \neg (x \wedge y) \to z \downarrow \end{aligned}$

Gate

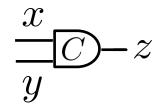
gate = rule-pair

state holding

set-reset latch $s \rightarrow z \uparrow$ $r \rightarrow z \downarrow$ 2C-Element $x \land u \rightarrow z \uparrow$

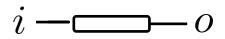


 $\begin{array}{c} x \wedge y \to z \uparrow \\ \neg x \wedge \neg y \to z \downarrow \end{array}$



Wire

= special gate



 $i \to o \uparrow$ $\neg i \to o \downarrow$

Production rules

circuit = algorithm = set of production rules

$$\begin{array}{ll} Au: x \wedge y \to z \uparrow \\ Ad: \neg (x \wedge y) \to z \downarrow & i - \underbrace{\qquad x \\ Du: i \to x \uparrow & y \end{array} Dd: \neg i \to x \downarrow \end{array}$$

environment = set of production rules

Execution

```
global state s: V \mapsto \{0, 1\}
```

enabled rule, step

execution $(s_n)_{n\geq 0}$

constraints: (weak) fairness, partial order, timed

Hardware design

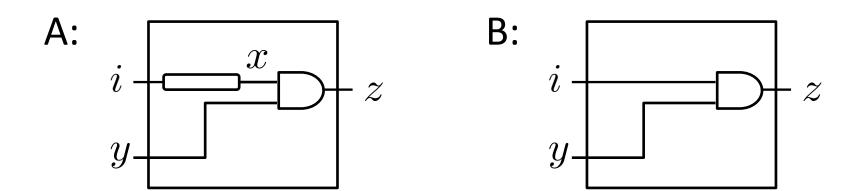
Given basic building blocks, implement the specification.

Circuit A implements circuit B

observable variables ${\cal O}$

trace inclusion

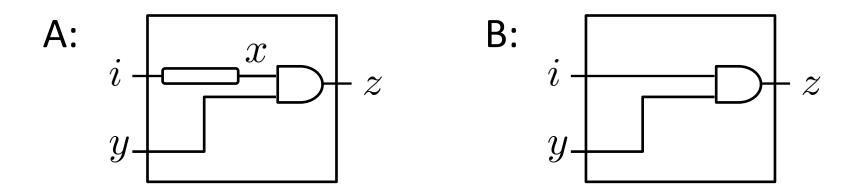
 $E_A \upharpoonright \mathcal{O} \subseteq E_B \upharpoonright \mathcal{O}$



Circuit A implements circuit B

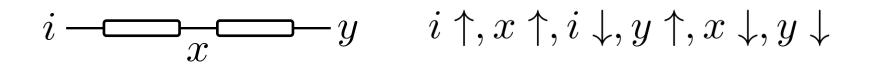
 $\begin{array}{l} i\uparrow x\uparrow i\downarrow y\uparrow z\uparrow\mapsto\\ i\uparrow i\downarrow y\uparrow z\uparrow\end{array}$

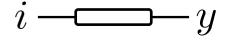
-> A does not implement B



Mind...

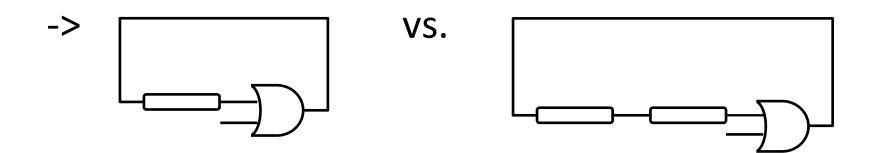
wire + wire "is" not a (long) wire





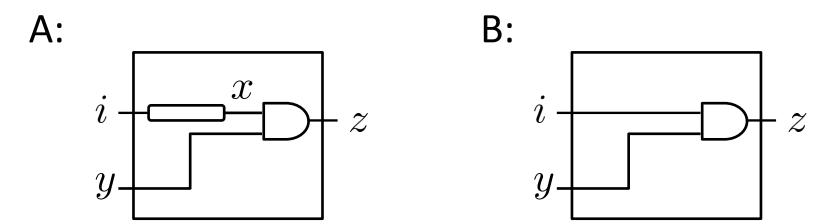
Mind...

wire + wire "is" not a (long) wire



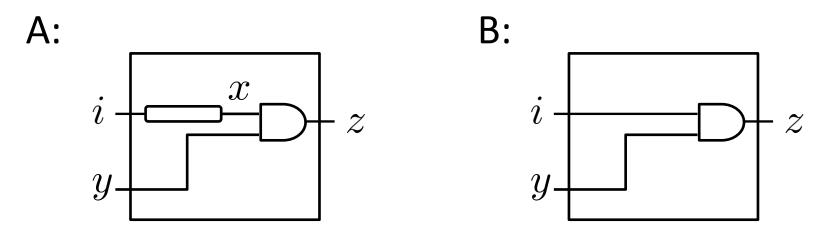
oscillations?! [hw]

Simulation.



 $i\uparrow$

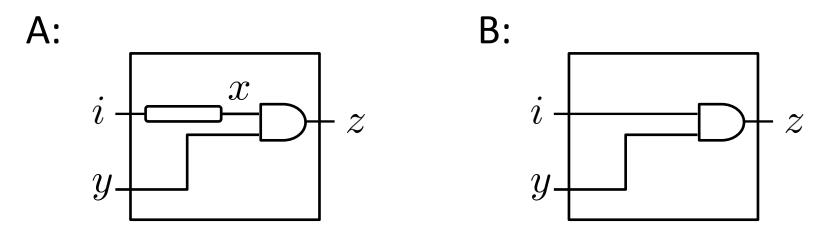
Simulation.



 $i\uparrow$

 $i\uparrow$

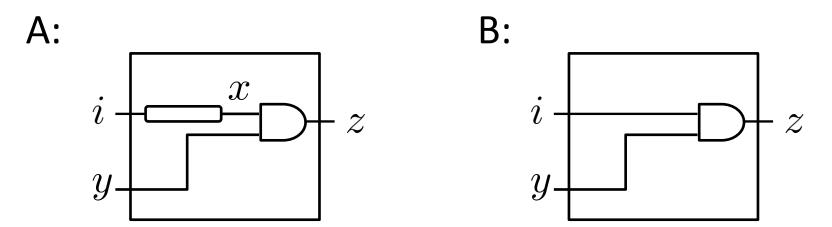
Simulation.



 $i\uparrow$

 $i \uparrow i \downarrow$

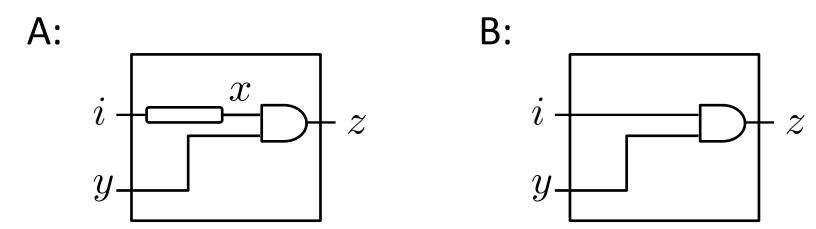
Simulation.



 $i\uparrow i\downarrow$

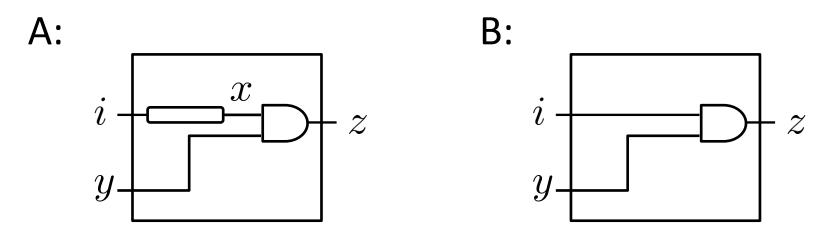
 $i \uparrow i \downarrow$

Simulation.



 $i\uparrow i\downarrow$

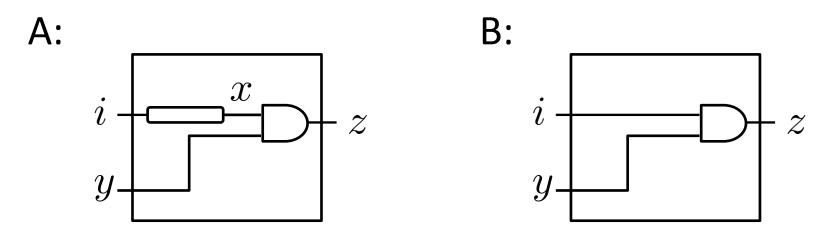
Simulation.



 $i\uparrow i\downarrow y\uparrow$

 $i\uparrow i\downarrow y\uparrow$

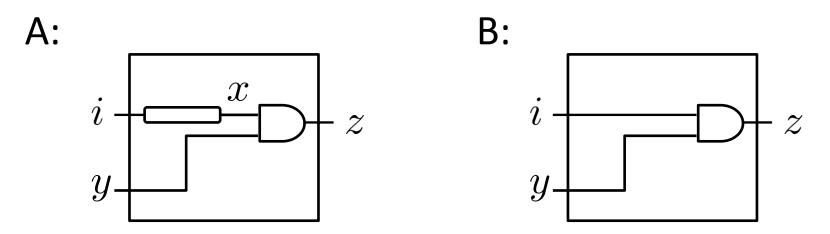
Simulation.



 $i\uparrow i\downarrow y\uparrow$

 $i\uparrow i\downarrow y\uparrow i\uparrow$

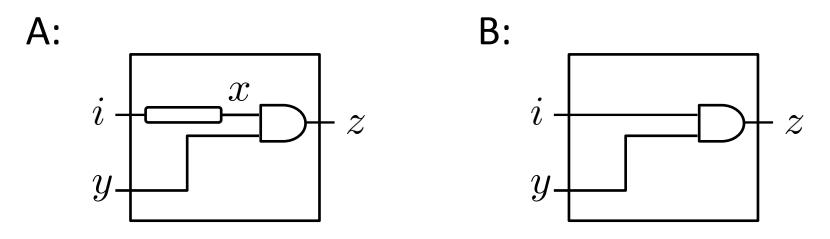
Simulation.



 $i\uparrow i\downarrow y\uparrow i\uparrow$

 $i\uparrow i\downarrow y\uparrow i\uparrow$

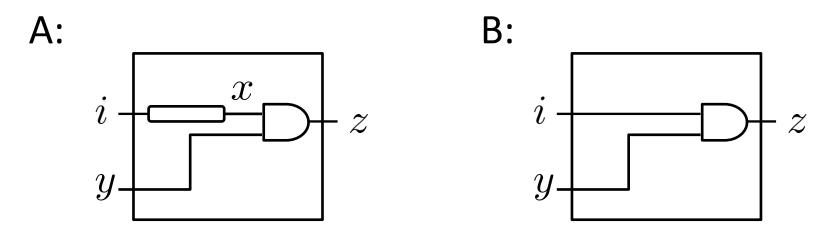
Simulation.



 $i\uparrow i\downarrow y\uparrow i\uparrow$

 $i \uparrow i \downarrow y \uparrow i \uparrow z \uparrow$

Simulation.



 $i \uparrow i \downarrow y \uparrow i \uparrow x \uparrow z \uparrow$

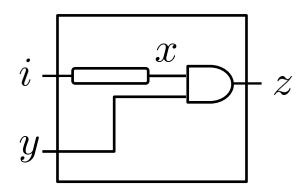
 $i\uparrow i\downarrow y\uparrow i\uparrow z\uparrow$

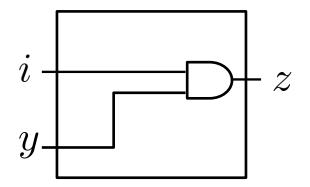
A can simulate B.

Game rules:

- B makes a sequence of steps: non-observables with ending observable
- A makes a sequence of steps: non-observables with same ending observable

A can simulate B -> B implements A [hw]





 $i \uparrow i \downarrow y \uparrow i \uparrow x \uparrow z \uparrow$

 $i \uparrow i \downarrow y \uparrow i \uparrow z \uparrow$

A can simulate B -> B implements A [hw]

Simulation is an efficient test for implementation.

A can simulate B -> B implements A [hw]

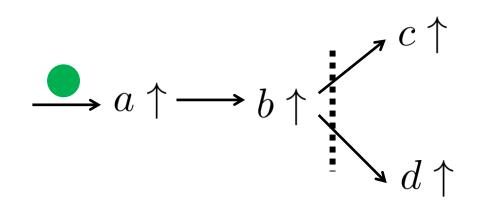
Simulation is an efficient test for implementation.

Is "can simulate" also necessary?

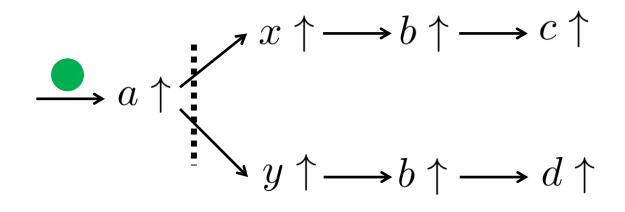
A can simulate B <- B implements A ?

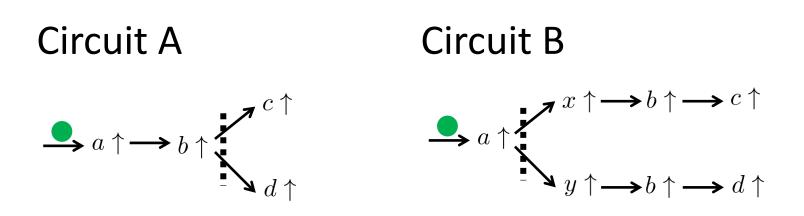
$$\mathcal{O} = \{a, b, c, d\}$$

 $\begin{array}{l} \top \to a \uparrow \\ [\bot \to a \downarrow] \\ a \to b \uparrow \\ b \wedge \neg d \to c \uparrow \\ b \wedge \neg c \to d \uparrow \end{array}$

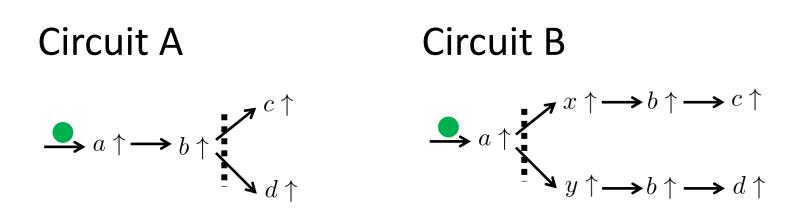


 $\mathcal{O} = \{a, b, c, d\}$





B implements A and A implements B. A can simulate B



B implements A and A implements B. A can simulate B but B **cannot** simulate A.

-> other notions of "can simulate"