Beyond classical chip design
lecture 3

Self-stabilization (continued)

What we had...

Distributed, weak-fair scheduler ->
Distributed, neighbour-mutex, weak fair scheduler.

Dijkstra‘s algorithm

02,0, 20, .0, .0, O

distributed scheduler

Self-stabilization

... link reversal almost solves the problem.

token merging

LR

distributed schedule

Self-stabilization

stable algorithm

r—1 ¢ 1 +1 1+2 1+3

R L L R L
— || — || — || /™ || —

Self-stabilization

adding direction

Self-stabilization

tokens turn only at borders ->

Prop 1. Mutex holds.

Prop 2. Weak fairness holds.

Self-stabilization

to left

20 -5 | &
A g
|y iy
— || & | & || &

Self-stabilization

to right ...

ARG
HiF[F

e
R L
* 4+—
R
5N

-—-»

... well

Self-stabilization

N
Ail = A
w, [=&

requires simultaneity: two sided constraint!

Self-stabilization

N

Al LA
| 5

< lAh,

-—)p 4L ... one sided

Self-stabilization

... without timing?

Self-stabilization

R
—) L
req \
R R
— —
req / ack
R
\lv> *
clear ack ack

?? ... violation

e

Self-stabilization

R
k
k

<<

r.
re

clear ack

ack

Beyond classical circuit design
lecture 3.5

Circuit model

Further Reading

Alain J. Martin: Synthesis of Asynchronous VLS| Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nystrom: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.

Binary, event based model

here [Alain Martin]:
low-level: production rules.

high-level: communicating hardware processes.

Low-level Specifications

Production rules

Production rules

variable/port: from a finite alphabet V
transition: variable + up/down

production rule: Boolean guard -> transition

r ANy —z7
—(zANy) = 2]

Production rules

x ANy —z71
“(zAy) =2

typically rule-pairs

non-interference: per rule-pair ~(Bu A Bd)
no self-reference: per rule

Gate

gate = rule-pair

combinational (NOT, 2AND, 20R, AOls, ...)
Bu <~ - Bd

Gate

gate = rule-pair

state holding

set-resetlatch s — 2z 7
r—zl

2C-Element ANy —z71

Ay — 2z

Wire
= special gate

1 —C——o0

1 — o7
-, — 0

Production rules

circuit = algorithm = set of production rules

Au:x ANy — z 7

Ad i =(z Ay) — 2))
Du:1—x? Y
Dd:—1— x|

environment = set of production rules

Execution

global state s: V — {0,1}
enabled rule, step
execution (Sn)n>0

constraints: (weak) fairness, partial order, timed

Hardware design

Given basic building blocks, implement the
specification.

Circuit A implements circuit B

observable variables O
trace inclusion

EalOCER|O

L= M2 (- 2

Circuit A implements circuit B

T TelytzT—
i/\i\l/y/rzzx

-> A does not implement B

A: | B: |
O e D)) M 2

Mind...

wire + wire “is” not a (long) wire

i——————y iTaeTil,yTzl,yl

| ———

wire + wire “is” not a (long) wire

=) -

oscillations?! [hw]

Mind...

VS.

Simulation.
A:

“implements”

“implements”

Simulation.
A: B:
X
L= M= ?
Y Yy

“implements”

Simulation.
A: B:
X
L= M= ?
Y Yy

“implements”

Simulation.
A: B:
X
L= M= ?
Y Yy

“implements”

Simulation.
A: B:
X
L= M= ?
Y Yy

“implements”

Simulation.
A: B:
X
L= M= ?
Y Yy

“implements”

Simulation.
A: B:
X
L= M= ?)
Y Y

“implements”

Simulation.
A: B
X
L= M= ?)
Y Y

“implements”

Simulation.

A: B
it - i B
(7 Y

cTalyTe? cTilyTeT 21

“implements”

Simulation.

A: B:
it - i B
(7 Y

cTialyTeTao Tzt cTilyTeT 21

“implements”

A can simulate B.

Game rules:
- B makes a sequence of steps:
non-observables with ending observable
- A makes a sequence of steps:

non-observables with same ending
observable

“implements”

A can simulate B -> B implements A [hw]

D (B

cTialyTeTao Tzt cTilyTeT 21

“implements”

A can simulate B -> B implements A [hw]

Simulation is an efficient test for
implementation.

“implements”

A can simulate B -> B implements A [hw]

Simulation is an efficient test for
implementation.

Is “can simulate” also necessary?

“implements”

A can simulate B <- B implements A ?

O =1{a,b,c,d}

T —=a?
1> all
a— b7

bA—-d—c?
bA—-c—d7

“implements”

“implements”

O =1{a,b,c,d}

etebt—ct
o ..

9, a1}

\E\yT—>bT—>dT

“implements”

Circuit A Circuit B
et g t—bt—>c?
TN o o i

E\dT E\QT—>6T—>CZT

Bimplements A and A implements B.
A can simulate B

“implements”

Circuit A Circuit B
et g t—bt—>c?
TN o o i

E\dT E\QT—>6T—>CZT

BimplementsA and A implements B.
A can simulate B but B cannot simulate A.

“implements”

-> other notions of “can simulate”

