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Self-stabilization (continued)



What we had...

Distributed, weak-fair scheduler ->
Distributed, neighbour-mutex, weak fair scheduler.

Dijkstra‘s algorithm
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distributed scheduler




Self-stabilization

... link reversal almost solves the problem.

token merging
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distributed schedule




Self-stabilization

stable algorithm
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Self-stabilization

adding direction




Self-stabilization

tokens turn only at borders ->

Prop 1. Mutex holds.

Prop 2. Weak fairness holds.



Self-stabilization

to left
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Self-stabilization

to right ...
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Self-stabilization
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requires simultaneity: two sided constraint!



Self-stabilization
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Self-stabilization

... without timing?




Self-stabilization
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Circuit model



Further Reading

Alain J. Martin: Synthesis of Asynchronous VLS| Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nystrom: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.



Binary, event based model

here [Alain Martin]:
low-level: production rules.

high-level: communicating hardware processes.



Low-level Specifications

Production rules



Production rules

variable/port: from a finite alphabet V
transition: variable + up/down

production rule: Boolean guard -> transition

r ANy —z7
—(zANy) = 2]



Production rules

x ANy —z71
“(zAy) =2

typically rule-pairs

non-interference: per rule-pair ~(Bu A Bd)
no self-reference: per rule



Gate

gate = rule-pair

combinational (NOT, 2AND, 20R, AOls, ...)
Bu <~ - Bd




Gate

gate = rule-pair

state holding

set-resetlatch s — 2z 7
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Wire
= special gate
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Production rules

circuit = algorithm = set of production rules
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environment = set of production rules



Execution

global state s: V — {0,1}
enabled rule, step
execution (Sn)n>0

constraints: (weak) fairness, partial order, timed



Hardware design

Given basic building blocks, implement the
specification.



Circuit A implements circuit B

observable variables O
trace inclusion
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Circuit A implements circuit B
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-> A does not implement B
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Mind...

wire + wire “is” not a (long) wire
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wire + wire “is” not a (long) wire
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oscillations?! [hw]

Mind...

VS.




Simulation.
A:

“implements”




“implements”

Simulation.
A: B:
X
L= M= ?
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“implements”

Simulation.
A: B:
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“implements”

Simulation.
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“implements”

Simulation.
A: B
X
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“implements”

Simulation.

A: B
it - i B
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“implements”

Simulation.

A: B:
it - i B
(7 Y
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“implements”

A can simulate B.

Game rules:
- B makes a sequence of steps:
non-observables with ending observable
- A makes a sequence of steps:

non-observables with same ending
observable



“implements”

A can simulate B -> B implements A [hw]
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“implements”

A can simulate B -> B implements A [hw]

Simulation is an efficient test for
implementation.



“implements”

A can simulate B -> B implements A [hw]

Simulation is an efficient test for
implementation.

Is “can simulate” also necessary?



“implements”

A can simulate B <- B implements A ?



O =1{a,b,c,d}
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“implements”



“implements”
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“implements”

Circuit A Circuit B
et g t—bt—>c?
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Bimplements A and A implements B.
A can simulate B



“implements”

Circuit A Circuit B
et g t—bt—>c?
TN o o i

E\dT E\QT—>6T—>CZT

BimplementsA and A implements B.
A can simulate B but B cannot simulate A.



“implements”

-> other notions of “can simulate”



