
Beyond classical chip design
lecture 3

Self-stabilization (continued)

Distributed, weak-fair scheduler ->

Distributed, neighbour-mutex, weak fair scheduler.

What we had...

Dijkstra‘s algorithm

distributed scheduler

... link reversal almost solves the problem.

Self-stabilization

distributed schedule

LR

token merging

stable algorithm

Self-stabilization

R L L L R

R R

adding direction

Self-stabilization

R

W

L

tokens turn only at borders ->

Prop 1. Mutex holds.

Prop 2. Weak fairness holds.

Self-stabilization

 to left ...

Self-stabilization

W L W W

L L W W

L L L

L L L L

W

... well

Self-stabilization

L L W

L L L R

R

L L L L

 to right ...

requires simultaneity: two sided constraint!

Self-stabilization

W

L R

R

=

 ... one sided

Self-stabilization

W

L R

R

<

L

...

 ... without timing?

Self-stabilization

L R

Self-stabilization

L R

R

req

ack req

clear ack

R

?? ... violation R

R

ack

W

Self-stabilization

L R

R

req

ack req

clear ack

R

R

R

ack

W

ack

Beyond classical circuit design
lecture 3.5

Circuit model

Further Reading

Alain J. Martin: Synthesis of Asynchronous VLSI Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nyström: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.

Binary, event based model

here [Alain Martin]:

low-level: production rules.

high-level: communicating hardware processes.

Low-level Specifications

Production rules

Production rules

variable/port: from a finite alphabet

transition: variable + up/down

production rule: Boolean guard -> transition

Production rules

typically rule-pairs

non-interference: per rule-pair

no self-reference: per rule

Gate

gate = rule-pair

combinational (NOT, 2AND, 2OR, AOIs, ...)

Gate

gate = rule-pair

state holding

set-reset latch

2C-Element

Wire

= special gate

Production rules

circuit = algorithm = set of production rules

environment = set of production rules

Execution

global state

enabled rule, step

execution

constraints: (weak) fairness, partial order, timed

Hardware design

Given basic building blocks, implement the
specification.

Circuit A implements circuit B

observable variables

trace inclusion

A: B:

Circuit A implements circuit B

-> A does not implement B

A: B:

Mind...

wire + wire “is” not a (long) wire

Mind...

wire + wire “is” not a (long) wire

-> vs.

oscillations?! [hw]

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

Simulation.

A: B:

“implements”

A can simulate B.

Game rules:

 - B makes a sequence of steps:

 non-observables with ending observable

 - A makes a sequence of steps:

 non-observables with same ending
 observable

“implements”

A can simulate B -> B implements A [hw]

“implements”

A can simulate B -> B implements A [hw]

Simulation is an efficient test for
implementation.

“implements”

A can simulate B -> B implements A [hw]

Simulation is an efficient test for
implementation.

Is “can simulate” also necessary?

“implements”

A can simulate B <- B implements A ?

“implements”

“implements”

“implements”

Circuit A Circuit B

B implements A and A implements B.

A can simulate B

“implements”

Circuit A Circuit B

B implements A and A implements B.

A can simulate B but B cannot simulate A.

“implements”

-> other notions of “can simulate”

