Beyond classical chip design
lecture 4

Circuit model (continued)

125

Further Reading

Alain J. Martin: Synthesis of Asynchronous VLSI Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nystrém: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.

126

What we had...

- Production rules
- Gate, circuit

- Aimplements B
- B can simulate A

127

Remember...

Stable transition functions:
i can make a transition to c at timet &
i cannot make a transitiontocattimet + 1
->
i made a transition at time ¢ + 1
(and thusisincattime ¢t + 1)

128

Remember...

“distributed schedule” s(t) C [n]

stable + distributed schedule ->
“linearizable to” schedule [later]

“ gk

129

Now...

Stable production rules:
Rule (i) can make a transition to c at time ¢ &

Rule (i) cannot make a transition to c at timet + 1
->

Rule (i) made a transition at time ¢t + 1

130

Stability

Stable production rules:
Rule (i) is enabled at timet &
Rule (i) is disabled at time ¢ + 1
-5

Rule (i) made a transition at time ¢t + 1

can be even simplified more from the last slide, since a rule (i) can make only a non-
trivial transition to the same next state x-up, e.g.

enabled :<-> guard is true and the transition is non-trivial
disabled :<-> not enabled

131

Linearizable

Linearizable:
Given initial state x and
distributed schedule prefix s(0)
let state y = x with enabled rules in s(0)
make a step;

then exists schedule prefix s'(0), s'(1), . ..

of rules in s(0) such that

y = x with enabled nodes ins’(0), s'(1), . ..
make a step.

linearizable: intuitively: possible to transform into a purely sequential schedule which

has the same final result.
what we want: all prefixes of distributed schedules linearizable.

this follows from the given definition. we simply apply the definition for each set of

the distributed schedule and generate a purely sequential schedule
with intermediate states.

132

Linearizable

“distributed schedule” s(t) C [n]

stable -> linearizable [hw]
Wb b
b

133

Top-level Specifications

Communicating hardware processes

134

Communicating hardware processes

a la CSP [Hoare, 78]
local variables x, v, ...
ports A, B, ...

- assignmenty :=x

135

Communicating hardware processes

Composition:

- parallelcl || c2
- serial c1; c2
- loop *[c1]

136

Communicating hardware processes

- blocking communication primitives
Alx A?y

137

Communicating hardware processes

- selection
[P1->cl || P2->c2|]..]

[P1 -> skip] = [P1]

selection [...] blocks only until one of P1, P2, etc is true and then executes the
respective actions c1, c2, etc.

138

Communicating hardware processes

- selection
[P1->cl || P2->c2|]..]

[P1 -> skip] = [P1]

- arbitrated selection = choice
[P1->cl|P2->c2]..]

arbitrated selection: exactly one of the c1, c2, ... becomes executed.

139

Execution

global state
enabled rule
execution

constraints: fairness, partial order constraints,
timed constraints

defined analogously to PRs

140

Example: the C-Element

C1: CHP from production rules.
«[[(aAD) = 2 1 [(ma A =b) = 2z]

C2: sequential CHP. [hw]
«[[a A b]; 2z T3 [na A —b]; 2 |]

141

Sequencing

Problem. Implement a;b.

one of the most fundamental problems

142

Sequencing

Problem. Implement a;b.
... almost all circuits

\ 4
~+

\ 4
~+

143

Sequencing

Problem. Implement a;b.
... almost all circuits

b
> 1
LT —Dt > yT S
y >
10
> ¢

144

Sequencing

Problem. Implement a;b.
... almost all circuits

b
> ¢
LT —Dt > yT a
y ' > 1
i
' > ¢

145

Sequencing

Problem. Implement a;b.
... almost all circuits

-> executions are just distorted in time

146

Sequencing

Problem. Implement a;b.
... almost all circuits

order + worst-case upper bounds.

147

Sequencing

here exact timing plays a crucial rule, not just ordering: FFT of a signal

148

Sequencing

149

Sequencing

Two fundamental solutions.
1. Externally triggered.

2. Trigger themselves.

150

Sequencing

Two fundamental solutions.
1. Externally triggered = synchronous model

2. Trigger themselves = clockless model

151

Sequencing

Synchronous model.

A A

NI

152

Sequencing

Synchronous model.

153

Sequencing

Clockless model.

154

Sequencing

Clockless model.

155

Sequencing

Clockless model, aggressively timed.

clockless can be heavily time dependent, not at all robust to delay variations.

156

Which one to choose...

... depends, e.g., on
- extent of delay variations
- allowed power consumption

157

Delay Variations

Occurences Occurences
400 500
30/uy =15.58%@1.0V 200 30/y =5.76%@1.0V
500 3o/p = 15.70%@0.9V 30/ = 5.84%@0.9V
300
200 || 30/4 = 16.29% @0.8V 30/u = 5.96% @0.8V
30/u =17.74%@0.7V 200 30/u =6.17%@0.7V
100 3o/ = 22.25%@0.6V 100 30/y =6.81%@0.6V
/LL 3o/u = 35.49% @0.5V A 30/ = 9.43%@0.5V
% 2 4 6 8 % 0.5 1 15 2 25
Delay (s) x107° Delay (s) x107
(a) a single inverter (b) a chain of 50 FO4 inverters

90nm technology variations, Seo et al., DAC'12

158

Remember...

0‘]MUL ﬂk 30/I =3§.{9%@0.§v

0 2 - 6 8

-10

Delay (s) x 10

assuming normal distribution
P(Delay € [— 30, 4 30]) ~ 0.9973

159

Delay Variations

Occurrences
20001

128 wide@1V

A

45 50 60
FO4 Inverter Delay

1500

1000 1-wide@1V

500 - critical path@1V

critical path 90nm (near th), Seo et al., DAC12

160

Delay Variations

P(fail) <-> throughput [hw]

N N aﬂ\

The synchronous (left) data send fails if the delay of a is longer than the clock period.

161

Require: a;b.

Pl:...a..
P2:...b...
Pl:a;ro?
P2 : [li];b

Sequencing

Pl ro

> [7

P2

doing this once. single line sufficient. how do it several time? -> multishot problem

162

Sequencing - multishot

> [7

lo

Require: a;b. Pl 1o
Pl:x[...a...] ile
P2:x[...b...]

Pl:a;roti[ri ro ¢

P2: [li]iblot 1o M7

P2

multishot = solve several times, not just once -> add a link back from receiver to

sender to signal when ready for the next shot.

163

Require: a;b.
Pl:x[...a...]
P2:x[...b...]

P1

ro

i

Sequencing - multishot

Pl :a;rot;[ril;a;rol;[—ri] ro
P2 : [li]; bylo 15 [—li]; by lo |

li

lo

P2

o S

different program parts for even and odd sequencing of a;b

164

Sequencing - multishot

Require: a;b. P1

P2

0 > [7
Pl:x[...a...] :
ri € lo
P2:x[...b...]
even odd
| A

165

2-phase handshake

even
|

[

REQ ACK REQ

ACK

Pl ro® R sl P2
ri e————lo
odd
1 A 1
P1: a;ro ty|ril; a;ro Li|[—ri] ro ¢
P2 [li]; bflo 15 [Hlif; bilo | o R*ON7eq

black dot = active node.
active = starts with send

passive = starts with wait
always match an active interface with a passive one.

per sequencing -> 2 phases (req and ack phase: ,2-phase handshake®)

166

even odd
1 |

2-phase handshake

P1:a;ro T;|ril; a;ro Li|[—ri]
P2 : [li]; bilo 13 [—li]; blo |

REQ ACK REQ ACK

P1:a;ro:= —royro = ri
P2 : [lo # li]; bjlo := —lo

REQ ACK

1

even and odd instances can be expressed by the same code.

167

4-phase handshake

P1

ro

1

® RiQ

e

Cad

all
|

<

ACK

I

P1: a;ro t;|riliro L;|[—ri]
P2 : [li]; bilo T [—li]{lo |

REQ

ACK cIREQ

clACK

> i P2

lo

ro 4

lO REQ

ACK

cIREQ

ACK

4 phases per sequencing.

168

multishot-sequencing

Techniques:

- clocked: 1pair/D
- 2-phase: 1pair/2D
- 4-phase: 1pair/4D

D = communication delay from sender module to recevier module or vice versa.
Note that D differs in fact for all the above techniques -> depends which one is best.

169

