Beyond classical chip design
lecture 4

Circuit model (continued)
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Further Reading

Alain J. Martin: Synthesis of Asynchronous VLSI Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nystrém: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.
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What we had...

- Production rules
- Gate, circuit

- Aimplements B
- B can simulate A
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Remember...

Stable transition functions:
i can make a transition to c at timet &
i cannot make a transitiontocattimet + 1
->
i made a transition at time ¢ + 1
(and thusisincattime ¢t + 1)
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Remember...

“distributed schedule” s(t) C [n]

stable + distributed schedule ->
“linearizable to” schedule [later]

“ gk
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Now...

Stable production rules:
Rule (i) can make a transition to c at time ¢ &

Rule (i) cannot make a transition to c at timet + 1
->

Rule (i) made a transition at time ¢t + 1

130



Stability

Stable production rules:
Rule (i) is enabled at timet &
Rule (i) is disabled at time ¢ + 1
-5

Rule (i) made a transition at time ¢t + 1

can be even simplified more from the last slide, since a rule (i) can make only a non-
trivial transition to the same next state x-up, e.g.

enabled :<-> guard is true and the transition is non-trivial
disabled :<-> not enabled

131



Linearizable

Linearizable:
Given initial state x and
distributed schedule prefix s(0)
let state y = x with enabled rules in s(0)
make a step;

then exists schedule prefix s'(0), s'(1), . ..

of rules in s(0) such that

y = x with enabled nodes ins’(0), s'(1), . ..
make a step.

linearizable: intuitively: possible to transform into a purely sequential schedule which

has the same final result.
what we want: all prefixes of distributed schedules linearizable.

this follows from the given definition. we simply apply the definition for each set of

the distributed schedule and generate a purely sequential schedule
with intermediate states.
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Linearizable

“distributed schedule” s(t) C [n]

stable -> linearizable [hw]
Wb b
b
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Top-level Specifications

Communicating hardware processes
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Communicating hardware processes

a la CSP [Hoare, 78]
local variables x, v, ...
ports A, B, ...

- assignmenty :=x
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Communicating hardware processes

Composition:

- parallelcl || c2
- serial c1; c2
- loop *[c1]
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Communicating hardware processes

- blocking communication primitives
Alx A?y
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Communicating hardware processes

- selection
[P1->cl || P2->c2|]..]

[P1 -> skip] = [P1]

selection [...] blocks only until one of P1, P2, etc is true and then executes the
respective actions c1, c2, etc.
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Communicating hardware processes

- selection
[P1->cl || P2->c2|]..]

[P1 -> skip] = [P1]

- arbitrated selection = choice
[P1->cl|P2->c2]..]

arbitrated selection: exactly one of the c1, c2, ... becomes executed.
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Execution

global state
enabled rule
execution

constraints: fairness, partial order constraints,
timed constraints

defined analogously to PRs
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Example: the C-Element

C1: CHP from production rules.
«[[(aAD) = 2 1 [ (ma A =b) = 2z ]

C2: sequential CHP. [hw]
«[[a A b]; 2z T3 [na A —b]; 2 |]

141



Sequencing

Problem. Implement a;b.

one of the most fundamental problems

142



Sequencing

Problem. Implement a;b.
... almost all circuits

\ 4
~+

\ 4
~+
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Sequencing

Problem. Implement a;b.
... almost all circuits

b
> 1
LT —Dt > yT S
y >
10
> ¢
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Sequencing

Problem. Implement a;b.
... almost all circuits

b
> ¢
LT —Dt > yT a
y ' > 1
i
' > ¢
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Sequencing

Problem. Implement a;b.
... almost all circuits

-> executions are just distorted in time
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Sequencing

Problem. Implement a;b.
... almost all circuits

order + worst-case upper bounds.

147



Sequencing

here exact timing plays a crucial rule, not just ordering: FFT of a signal
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Sequencing
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Sequencing

Two fundamental solutions.
1. Externally triggered.

2. Trigger themselves.
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Sequencing

Two fundamental solutions.
1. Externally triggered = synchronous model

2. Trigger themselves = clockless model
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Sequencing

Synchronous model.

A A

NI
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Sequencing

Synchronous model.
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Sequencing

Clockless model.
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Sequencing

Clockless model.
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Sequencing

Clockless model, aggressively timed.

clockless can be heavily time dependent, not at all robust to delay variations.
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Which one to choose...

... depends, e.g., on
- extent of delay variations
- allowed power consumption
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Delay Variations

Occurences Occurences
400 500
30/uy =15.58%@1.0V 200 30/y =5.76%@1.0V
500 3o/p = 15.70%@0.9V 30/ = 5.84%@0.9V
300
200 || 30/4 = 16.29% @0.8V 30/u = 5.96% @0.8V
30/u =17.74%@0.7V 200 30/u =6.17%@0.7V
100 3o/ = 22.25%@0.6V 100 30/y =6.81%@0.6V
/LL 3o/u = 35.49% @0.5V A 30/ = 9.43%@0.5V
% 2 4 6 8 % 0.5 1 15 2 25
Delay (s)  x107° Delay (s) x107
(a) a single inverter (b) a chain of 50 FO4 inverters

90nm technology variations, Seo et al., DAC'12
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Remember...

0‘ ]MUL ﬂk 30/I =3§.{9%@0.§v

0 2 - 6 8

-10

Delay (s) x 10

assuming normal distribution
P(Delay € [ — 30, 4 30]) ~ 0.9973
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Delay Variations

Occurrences
20001

128 wide@1V

A

45 50 60
FO4 Inverter Delay

1500

1000 1-wide@1V

500 - critical path@1V

critical path 90nm (near th), Seo et al., DAC12
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Delay Variations

P(fail) <-> throughput [hw]

N N aﬂ\

The synchronous (left) data send fails if the delay of a is longer than the clock period.
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Require: a;b.

Pl:...a..
P2:...b...
Pl:a;ro?
P2 : [li];b

Sequencing

Pl ro

> [7

P2

doing this once. single line sufficient. how do it several time? -> multishot problem
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Sequencing - multishot

> [7

lo

Require: a;b. Pl 1o
Pl:x[...a...] ile
P2:x[...b...]

Pl:a;roti[ri ro ¢

P2: [li]iblot 1o M7

P2

multishot = solve several times, not just once -> add a link back from receiver to

sender to signal when ready for the next shot.
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Require: a;b.
Pl:x[...a...]
P2:x[...b...]

P1

ro

i

Sequencing - multishot

Pl :a;rot;[ril;a;rol;[—ri] ro
P2 : [li]; bylo 15 [—li]; by lo |

li

lo

P2

o S

different program parts for even and odd sequencing of a;b

164



Sequencing - multishot

Require: a;b. P1

P2

0 > [7
Pl:x[...a...] :
ri € lo
P2:x[...b...]
even odd
| A
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2-phase handshake

even
|

[

REQ ACK REQ

ACK

Pl ro® R sl P2
ri e————lo
odd
1 A 1
P1: a;ro ty|ril; a;ro Li|[—ri] ro ¢
P2 [li]; bflo 15 [Hlif; bilo | o R*ON7eq

black dot = active node.
active = starts with send

passive = starts with wait
always match an active interface with a passive one.

per sequencing -> 2 phases (req and ack phase: ,2-phase handshake®)
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even odd
1 |

2-phase handshake

P1:a;ro T;|ril; a;ro Li|[—ri]
P2 : [li]; bilo 13 [—li]; blo |

REQ ACK REQ ACK

P1:a;ro:= —royro = ri
P2 : [lo # li]; bjlo := —lo

REQ ACK

1

even and odd instances can be expressed by the same code.
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4-phase handshake

P1

ro

1

® RiQ

e

Cad

all
|

<

ACK

I

P1: a;ro t;|riliro L;|[—ri]
P2 : [li]; bilo T [—li]{lo |

REQ

ACK cIREQ

clACK

> i P2

lo

ro 4

lO REQ

ACK

cIREQ

ACK

4 phases per sequencing.
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multishot-sequencing

Techniques:

- clocked: 1pair/D
- 2-phase: 1pair/2D
- 4-phase: 1pair/4D

D = communication delay from sender module to recevier module or vice versa.
Note that D differs in fact for all the above techniques -> depends which one is best.
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