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Alternative Design Styles
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Further Reading
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Remember: CMOS Design

Combinational Logic:
n-stack: down transition G —y |
p-stack: up transition -G =yt
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Combinational Logic

=0

Ratioed-logic: Pull-up

G-yl
-G =yl
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Circuit size?
Static power?

pull-up instead of p-stack
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Pseudo-NMOS
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implementation with MOSFETs

thus the name “ratioed”: the pMOS acting as a pull-up resistor must not be too

strong compared to the pull-down nMQOS

that is: the ratio W/L of pMOS and W/L of nMOS must fulfill a certain ratio for the

circuit to work correctly.
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Pass-transistor Logic

AND gate b

Mind: reduced voltage swing!
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Pass-transistor Logic
In general:
... what about this wrt. voltage swing?

b ¢
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Pass-transistor Logic

Complete pass gate

b

1
Y versus ad Ly
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Beyond classical circuit design
lecture 9.5

Clocked Design Styles
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Latch

Positive latch Negative latch

—|D QpF —|D  Qp
F E

I I

Positive latch behavior
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Q stable l pass in l stable l pass in

negative latch specified analogously with inverted enable signal E_
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Positive Latch Implementation

by transmission gates
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Positive Latch Implementation

by transmission gates But mind:
E e_[ |
) DJL E_\ [ 1\
_ versus
B -0
p4{}H E_[ 1\ |
;|; E |

Assumes a perfectly inverted signal E_ = not E.

339



Positive Latch Implementation

by transmission gates

Y,

;f_l

—>o——Q

What is the load signal E
has to drive?

]
tq—[i]

E and E_ drive 4 transistors.
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Positive Latch Implementation

by NMQOS pass transistors

i .
1 Q

D

What is the load
signal E has to drive?

SIES

Using Q instead of Q_ increases the load for the pass gate. Decoupling it by an INV is
often a better choice to get a fast storage loop.
E and E_ drive 2 transistors.
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Flip-flop: edge triggered

—\D QF
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Q stable Q Qtable Q stable Q

positive edge triggered flip-flop:

on positive transition of E -> copy stable D to output Q and hold until next change.

assumption: D is table around positive edge of E (before edge: setup time, after edge:

hold time).

If not: either copy arbitrary value to output, or even become metastable (discussed

later on)

342



Flip-flop: edge triggered

—| ) Q’

master latch E

(negative) t

Q—»
slave latch
(positive)
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pass D
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pass D ‘ (stable Q’)
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stable Q x Qass Q ) )

stable Q

Qass Q’ )

whenever slave passes, master is stable.
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Flip-flop: positive edge triggered
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pass D ( i stable Q' J pass D K stable Q’
—— —

stable Q

Q & L M

X@i?'- ) stable Q EI:—

pass Q'

blue & green: data waves that are stable values.
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Reducing E-load

—| ) Q’ :D’ Q—b

ST NS

f_?
Do Do
)T Lo

by removing the feedback-loop pass gates, we reduce size and load signals E and E_

have to drive
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Mind sizing

—| ) Q’ :D’ Q—b
E E
t t

-

ST NS

removing the feedback -> attention has to be paid that the slave could influence the

master.
However, weak INV drives against INV.
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Preventing this...

E
1
pd L

-
T
E

SIS

We would like to prevent this (driving against each other). But, do not want to
increase load -> use the nMOS pass transistor implementation from before.
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Mind phases
¥1
4
E — Q
1
J%ﬁ
L L
T T
1) E
v [
1 P2

instead of E and E_ use two aligned phases phil and phi2.
Here: just renaming and decoupling from E.
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Mind phases

D Jrooooooo OO0

L 000.0.0.9.0.:0.0.9.0.6¢0.4

stable Q' J pass D ) stable Q’
—

Q stable Q

K@icf- A stable Q Ell__

possible timing violation
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Mind phases

D Poooo [ROO0XOKRXRKXXXKXXXX XXXXXXXXXXXXXXX
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Q’ pass D stable Q’ J pass O l stable Q’
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stable Q passr—@ass Q’
Q < )

clearly separated phase signals phil and phi2.
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Generate phases

oo

(locally)

locally since otherwise:

- two signals to distribute
- non-overlap problem, aga

b—(.‘02

in

from Rabaey et al. Digital Integrated Circuits (2" ed) p339
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Generate phases (locally)
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initial steady state
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Generate phases (locally)
10
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... still unstable
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Generate phases (locally)
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... stable state after E had a positive transition.

Note the “happened before” constraints for both E-up -> phi_1 up and phi_2 down ->
phi_1 up.

This guarantees well-separating between phi_1 and phi_2.
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Generate phases (locally)
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... still not stable
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Generate phases (locally)
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stable again. From here on cyclic behavior.
Mind the well-separated phases.
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Is this static?
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CFmargin
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higher T_margin -> better separation between phases and thus less chance of overlap
due to e.g. delay variations

However: comes at a price (not only performance): implicit (wire/load) capacitance
has to hold charge in the meantime -> decharging might be harmful

if T_margin is too long.
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