Computational Geometry and Geometric Computing
Eric Berberich
Kurt Mehlhorn
Michael Sagraloff

Winter 2009/2010
Discussion on November 4th.

Exercise 2

Motivation

We extend our study of the convex hull algorithm.

A Third $O(n \log n)$ algorithm

For simplicity, we restrict attention to the upper hull U, i.e., the part of the hull visible from $y=+\infty$. We also assume for simplicity that x-coordinates are pairwise distinct.
Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of the upper hull in increasing order of x-coordinate.

1. Given a point p, we want to to determine whether p lies above U. Show how to solve this problem by binary search in $O(\log k)$ steps.
2. Assume p lies above U. We want to determine the tangents of p with respect to U. Show how to solve this task in $O(\log k)$ steps using binary search.
3. If the vertices v_{1} to v_{k} are stored in an array of size k, binary search is easy to realize. However, the addition of p is non-trivial. What data structure is appropriate so that binary search can be carried out efficiently and a new point can be added efficiently to the data structure? You should be able to add a point to an upper hull of n points in time $O(\log n)$.

Examples of Nonrobustness

Study the web-page
http://www.mpi-inf.mpg.de/~kettner/proj/NonRobust/index.html.

1. KM thinks that this web-page is an excellent example of experimental research in CS. Do you agree?
2. Download nonrobust_06.tgz and install it on your machine. ${ }^{1}$
3. Run fp_scope ../data/vis_fp_pts_1.bin -o test.ppm and inspect test.ppm in gimp. You should recognize the picture.

[^0]4. In the last exercise, we proved that
\[

\operatorname{sign} \operatorname{det}\left($$
\begin{array}{cccc}
1 & p_{x} & p_{y} & p_{x}^{2}+p_{y}^{2} \\
1 & q_{x} & q_{y} & q_{x}^{2}+q_{y}^{2} \\
1 & r_{x} & r_{y} & r_{x}^{2}+r_{y}^{2} \\
1 & s_{x} & s_{y} & s_{x}^{2}+s_{y}^{2}
\end{array}
$$\right)
\]

computes the side-of-circle predicate of four points. Start with the program fp_scope and design an experiment for the side of circle predicate. Try at least two kinds of data sets:

- The defining points of the circle are nicely spread over the boundary of the circle.
- The defining points of the circle lie close together.

In each case, the query point should range over a region intersecting the circle. Try to explain your experimental findings (along with a pictures).
5. Repeat the previous exercise for the side-of-wedge predicate. Let p, q, and r be three points in the plane. A point z lies in the wedge if z lies to the the left of the line $\ell(p, q)$ and to the right of the line $\ell(p, r)$. It lies on the wedge, if it lies on one of the lines, and it lies outside the wedge otherwise.
\bullet

$$
w e d g e(p, q, r, z)=\operatorname{orient}(p, q, z) \cdot \operatorname{orient}(p, q, z)
$$

-

$$
\operatorname{wedge}(p, q, r, z)=\operatorname{sign}\left(\operatorname{det}\left(\begin{array}{ccc}
1 & p_{x} & p_{y} \\
1 & q_{x} & q_{y} \\
& & \\
1 & z_{x} & z_{y}
\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{ccc}
1 & p_{x} & p_{y} \\
1 & r_{x} & r_{y} \\
& & \\
1 & z_{x} & z_{y}
\end{array}\right)\right)
$$

Try two kinds of query points: points near p and points near one of the two defining lines. Try to explain your experimental findings (along with pictures).

Have fun with the solution!

[^0]: ${ }^{1}$ Should compile on linux with g++. On Windows we encourage to use Cygwin. If there are compile errors (some known for $\mathrm{g}++-4.3 .1$), let us know, and we provide a fix.

