リINい

Computational Geometry and Geometric Computing
Eric Berberich
Kurt Mehlhorn
Michael Sagraloff

Winter 2009/2010
Discussion on November 11th.

Exercise 3

Motivation

We practise our knowledge of floating point arithmetic.

Doubles

What is the largest number representable as a double, the smallest positive number, the smallest normalized positive number?

Some Computations are Exact

Let $a, b \in F$ with $\frac{1}{2} \leq \frac{a}{b} \leq 2$. Show that $a \ominus b=a-b$. This was first observed by Sterbenz.

Doubles and Orientation

Assume for this exercise that point coordinates are doubles in $[1 / 2,1]$. Show

- orient $(p, q, r)=0$ implies floatorient $(p, q, r)=0$.
- floatorient $(p, q, r) \neq 0$ implies orient $(p, q, r)=$ floatorient (p, q, r).
- What does this mean for the geometry of float-orient?
- Can you find examples that make the floating point implementation of the convex hull algorithm crash when point coordinates are restricted to doubles in $[1 / 2,1]$?

Error Analysis

Assume that a point p is given by its homogeneous coordinates ($p x, p y, p w$). Assuming $\operatorname{sign}(a w \cdot b w \cdot c w)=1$, we have
$\operatorname{orient}(a, b, c)=\operatorname{sign}(a w \cdot(b x \cdot c y-b y \cdot c x)-b w \cdot(a x \cdot c y-a y \cdot c x)+c w \cdot(a x \cdot b y-a y \cdot b x))$.
Compute the d-value and m-value of this expression.

A High Precision Computation of π

Show how to compute π with an error less than 2^{-200}.

Linear Kernel

In class we discussed the concept of a linear kernel and several models of it. The notes contain a C++ implementation. Give an implementation in a programming language of your choice (preferably not $\mathrm{C}++$).

Rational Points on a Circle

In class we showed that for any rational point $p=\left(p_{x}, p_{y}\right)$ on the unit circle there is a rational a such that

$$
\left(p_{x}, p_{y}\right)=\left(\frac{2 a}{a^{2}+1}, \frac{a^{2}-1}{a^{2}+1}\right) .
$$

In order to find a rational point in direction α, we therefore need to find a rational a such that

$$
a \approx \frac{1}{\cos \alpha}+\sqrt{\frac{1}{\cos ^{2} \alpha}-1}
$$

Show how to find such an approximation with error less than 2^{-t} by binary search.
Have fun with the solution!

