Computational Geometry and Geometric Computing
Eric Berberich
Kurt Mehlhorn
Michael Sagraloff

Winter 2009/2010
Discussion on December 2nd.

Exercise 6

Motivation

We practise arrangements.

Bounding box

Give an $O(n \log n)$ algorithm to compute an axis-parallel rectangle R that contains all vertices in an arrangement of n lines.

Zone of segment in triangulation

Given a triangulation \mathcal{T} with n triangles and a segment $s:=\overline{p q}$. Compute all triangles intersected by s. Especially take care about degenerate situations.

Trapezoidal decomposition

The trapezoidal decomposition of an arrangement \mathcal{A} induced by a set of curves is given by drawing vertical extensions from each vertex in upward and downward direction. Such an extension is either a segment if it hits another curve, or a ray that extends to infinity.

1. Sketch an algorithm to compute this decomposition.
2. Assume that the arrangement consists of n_{e} edges and they are in general position. Use a sweep argument to show that the vertical decomposition consists of $3 n_{e}+1$ trapezoids.
3. Relax the conditions for a trapezoid and show that the upper bound of $3 n_{e}+1$ trapezoids still holds for edges not being in general position.

Have fun with the solution!

