

Computational Geometry and Geometric Computing Eric Berberich Kurt Mehlhorn Michael Sagraloff Winter 2009/2010 Discussion on December 9th.

Exercise 7

Motivation

We consider basic operations on polynomials such as root isolation and gcd computation.

GCD Computation

Let f be a polynomial with rational coefficients. Consider the following recursion: We initially start with $f_0 := f$ and $f_1 := f'$. For $i \ge 0$ let $d_i := \deg f_i - \deg f_{i+1}$ and consider

$$f_{i+2} := \lambda f_i + x^{d_i} f_{i+1}$$

with rational λ such that f_{i+2} has lower degree then f_i . Show:

- Let g be a rational polynomial that divides f and f', that is, there exists rational polynomials g_1 and g_2 with $f = g_1 \cdot g$ and $f' = g_2 \cdot g$. Then g divides each f_i .
- Let i_0 be the first index *i* where $f_i = 0$. Then f_{i_0-1} divides *f* and *f'* and there exists no polynomial of larger degree with the same property. It follows that $f_{i_0-1} = \gcd(f, f')$.
- If f is a rational polynomial with distinct complex roots ξ_1, \ldots, ξ_m then

$$f^* := (x - \xi_1) \cdot \ldots \cdot (x - \xi_m)$$

is rational as well and a scalar multiple of $f/\operatorname{gcd}(f, f')$.

• $\deg \gcd(f, f') = \deg f - m$ with m as above.

Real Root Isolation

Given a polynomial $f = \sum_{i=0}^{n} a_i x^i$ with real coefficients we aim for a set of disjoint intervals I_1, \ldots, I_m such that their union $\bigcup_{k=1}^{n} I_k$ contains all real roots of f and each I_k exactly one real root.

• Show that the modulus $|\xi|$ of each root ξ of f is bounded by

$$B := 1 + \max_i \frac{|a_i|}{|a_n|}.$$

(Hint: Each root ξ of f fulfills the inequality $|a_n||\xi|^n \leq \sum_{i=0}^n |a_i||\xi|^n$.)

• Let I = (a, b) be an interval with midpoint $m = \frac{a+b}{2}$ and g a polynomial of degree N with Taylor expansion

$$g(m+x) = \sum_{k=0}^{N} \frac{g^{(k)}(m)}{k!} x^k$$

at m. We consider the test

$$T(g,I): |g(m)| > \sum_{k=1}^{N} \frac{|g^{(k)}(m)|}{k!} \left(\frac{b-a}{2}\right)^{k}.$$

Show that I contains no root of f if T(f, I) succeeds!

- Show: If T(f', I) succeeds then f is monotone on I. How can you use this test to show that an interval I is isolating?
- Formulate an algorithm to isolate all real roots of f and show exactness and termination.

(Hint: For the root isolation consider $f^* := f/\operatorname{gcd}(f, f')$ and use the fact that $(f^*)'(\xi) \neq 0$ at all roots ξ of f^* .)

Have fun with the solution!