Computational Geometry and Geometric Computing

Eric Berberich

Winter 2009/2010
Discussion on December 9th.

Kurt Mehlhorn
Michael Sagraloff

Exercise 7

Motivation

We consider basic operations on polynomials such as root isolation and gcd computation.

GCD Computation

Let f be a polynomial with rational coefficients. Consider the following recursion: We initially start with $f_{0}:=f$ and $f_{1}:=f^{\prime}$. For $i \geq 0$ let $d_{i}:=\operatorname{deg} f_{i}-\operatorname{deg} f_{i+1}$ and consider

$$
f_{i+2}:=\lambda f_{i}+x^{d_{i}} f_{i+1}
$$

with rational λ such that f_{i+2} has lower degree then f_{i}. Show:

- Let g be a rational polynomial that divides f and f^{\prime}, that is, there exists rational polynomials g_{1} and g_{2} with $f=g_{1} \cdot g$ and $f^{\prime}=g_{2} \cdot g$. Then g divides each f_{i}.
- Let i_{0} be the first index i where $f_{i}=0$. Then $f_{i_{0}-1}$ divides f and f^{\prime} and there exists no polynomial of larger degree with the same property. It follows that $f_{i_{0}-1}=\operatorname{gcd}\left(f, f^{\prime}\right)$.
- If f is a rational polynomial with distinct complex roots ξ_{1}, \ldots, ξ_{m} then

$$
f^{*}:=\left(x-\xi_{1}\right) \cdot \ldots \cdot\left(x-\xi_{m}\right)
$$

is rational as well and a scalar multiple of $f / \operatorname{gcd}\left(f, f^{\prime}\right)$.

- $\operatorname{deg} \operatorname{gcd}\left(f, f^{\prime}\right)=\operatorname{deg} f-m$ with m as above.

Real Root Isolation

Given a polynomial $f=\sum_{i=0}^{n} a_{i} x^{i}$ with real coefficients we aim for a set of disjoint intervals I_{1}, \ldots, I_{m} such that their union $\bigcup_{k=1}^{n} I_{k}$ contains all real roots of f and each I_{k} exactly one real root.

- Show that the modulus $|\xi|$ of each root ξ of f is bounded by

$$
B:=1+\max _{i} \frac{\left|a_{i}\right|}{\left|a_{n}\right|} .
$$

(Hint: Each root ξ of f fulfills the inequality $\left|a_{n}\right||\xi|^{n} \leq \sum_{i=0}^{n}\left|a_{i}\right||\xi|^{n}$.)

- Let $I=(a, b)$ be an interval with midpoint $m=\frac{a+b}{2}$ and g a polynomial of degree N with Taylor expansion

$$
g(m+x)=\sum_{k=0}^{N} \frac{g^{(k)}(m)}{k!} x^{k}
$$

at m. We consider the test

$$
T(g, I):|g(m)|>\sum_{k=1}^{N} \frac{\left|g^{(k)}(m)\right|}{k!}\left(\frac{b-a}{2}\right)^{k} .
$$

Show that I contains no root of f if $T(f, I)$ succeeds!

- Show: If $T\left(f^{\prime}, I\right)$ succeeds then f is monotone on I. How can you use this test to show that an interval I is isolating?
- Formulate an algorithm to isolate all real roots of f and show exactness and termination.
(Hint: For the root isolation consider $f^{*}:=f / \operatorname{gcd}\left(f, f^{\prime}\right)$ and use the fact that $\left(f^{*}\right)^{\prime}(\xi) \neq$ 0 at all roots ξ of f^{*}.)

Have fun with the solution!

