Computational Geometry and Geometric Computing
Eric Berberich
Kurt Mehlhorn
Michael Sagraloff

Winter 2009/2010
Discussion on December 16th.

Exercise 8

Motivation

We consider planar curves and their intersection. Furthermore, we introduce a new method for root isolation of univariate polynomials.

Intersections of Planar Curves

- Consider the circles

$$
\begin{aligned}
& C_{1}=V\left((x-1)^{2}+y^{2}-2\right) \\
& C_{2}=V\left(x^{2}+(y+2)^{2}-3\right) \\
& C_{3}=V\left(x^{2}+y^{2}-4.1599\right)
\end{aligned}
$$

How many different pairwise intersection points exist? Is $C_{1} \cap C_{2} \cap C_{3}=\emptyset$? (proof!)

- For which values of λ is

$$
C_{1} \cap C_{2} \cap C^{(\lambda)} \neq \emptyset,
$$

where $C^{(\lambda)}=V\left(x^{2}+y^{2}-\lambda\right)$?

- Determine all real valued intersection points of the curves $C:=V\left(x^{3}+x^{2} y-2 x^{2}-\right.$ $\left.3 x y-3 y^{2}+6 y\right)$ und $D:=V\left(x^{4}-2 x^{2} y-2 x^{2}-3 y^{2}+6 y\right)$!
- For this exercise, we recommend to use the web demo at http://exacus.mpi-sb.mpg. de/cgi-bin/xalci.cgi (You do not have to prove your observation!). Consider the parameterized curve

$$
C^{\left(\lambda_{1}, \ldots, \lambda_{4}\right)}:=V\left(y^{4}-y^{3}+2 x^{2} y^{2}+3 x^{2} y+x^{4}+\lambda_{1} x^{2} y+\lambda_{2} x y+\lambda_{3} x+\lambda_{4}\right)
$$

1. Start with $\lambda_{1}=\ldots=\lambda_{4}=0$. Where does $C^{(0, \ldots, 0)}$ have a singular point (selfintersection)?
2. Set $\lambda_{1}=0.001$, is there a significant change ?
3. Set $\lambda_{2}=0.001$ as well. What is the number of singular points? Is there a significant change at all ?
4. What happens if we set $\lambda_{3}=0.001$ as well ?
5. Set $\lambda_{4}=0.001$. Is there a self intersection?
6. Choose some arbitrary values for $\lambda_{1}, \ldots, \lambda_{4}$. What do you observe? Does $C^{\left(\lambda_{1}, \ldots, \lambda_{4}\right)}$ have any self intersections?

Sturm Sequences

We consider the polynomial $f(x)=8-4 x+6 x^{2}-3 x^{3}-2 x^{4}+x^{5}$.

- Compute a Sturm sequence $\mathcal{S}=\left\{S_{0}, \ldots, S_{k}\right\}$ for f and evaluate \mathcal{S} at $x=-3,-2,-1,0,1,2,3$.
- What can you say about the number of real roots within $(-3,3)$?
- Formulate a general algorithm based on Sturm's theorem to isolate the real roots of an arbitrary polynomial g with rational coefficients (Take care about the prerequisites in Sturm's theorem!).
- Isolate the roots of f.

Have fun with the solution!

