Computational Geometry and Geometric Computing
Eric Berberich
Kurt Mehlhorn
Michael Sagraloff

Winter 2009/2010
Discussion on January 666666th.

Exercise 9

Motivation

Descartes' Rule of Sign, Root Isolation and Möbius transformations.

Descartes' Rule of Sign

- Let $f=\sum_{i=0}^{n} a_{i} x^{i}$ be a polynomial with n real roots and $f(0) \neq 0$. Show that $a_{i}=0$ implies that $a_{i-1} \cdot a_{i+1}<0$.
- Determine isolating intervals for the real roots of

$$
f=30 x^{5}+95 x^{4}-2 x^{3}-53 x^{2}-4 x+6
$$

by the use of the VCA algorithm.

Möbius Transformations

Show that, for $\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R} \backslash\{0\}$, each of the following transformations

$$
\begin{aligned}
t_{\lambda} & : z \rightarrow z+\lambda \\
h_{\mu} & : z \rightarrow \mu z \\
r & : z \rightarrow \frac{1}{z}
\end{aligned}
$$

- is bijective on $\overline{\mathbb{C}}:=\mathbb{C} \cup \infty$.
- maps general circles to general circles. We call a subset $C \in \overline{\mathbb{C}}$ in the complex space a general circle if C is either a circle or a line with ∞.
- preserves angles, that is, given two curves C_{1} and C_{2} in \mathbb{C} that intersect in a point ξ with an included angle α and let T be one of the transformations from above then the curves $T\left(C_{1}\right)$ and $T\left(C_{2}\right)$ intersect in $T(\xi)$ with an included angle α as well.
Hint: Consider two lines $L_{i}=\overline{a_{i} b_{i}}, i=1,2$, passing two distinct points $a_{i}, b_{i} \in C_{i}$. Compare the angle between the lines $\tilde{L}_{i}:=\overline{T\left(a_{i}\right), T\left(b_{i}\right)}$ and that included by L_{1} and L_{2} ! What happens if a_{i} and b_{i} converge to ξ ?

Have fun with the solution!

