Computational Geometry and Geometric Computing
Eric Berberich
Kurt Mehlhorn
Michael Sagraloff

Winter 2009/2010
Discussion on January 13th.

Exercise 10

Motivation

We continue our study of planar curves and root isolation methods.

Homogeneous Bivariate Polynomials

Call a bivariate polynomial $f(x, y)$ homogeneous, if the degree of all terms in f is the same. So $x^{2}-y^{2}-x y$ and $x y^{3}-x^{2} y^{2}+y^{4}$ are homogeneous, but $x^{2}+y$ is not.

- Use http://exacus.mpi-sb.mpg.de/cgi-bin/xalci.cgi to plot the curves $x^{2}-y^{2}-$ $x y=0$ and $x y^{3}-x^{2} y^{2}+y^{4}=0$, and $x^{2}-y^{2}=0$. Formulate a conjecture about the shape of vanishing sets of homogeneous polynomials.
- Show that any homogeneous polynomial factors into linear factors of the form $a x+b y$ with $a, b \in C$.

The Shape of a Curve near the Origin

Let f be a bivariate polynomial and let $f^{*} *$ be the homogeneous polynomial formed by the lowest order terms of f. For $f(x, y)=y^{3}+x^{2}-y^{2}+2 x y, f^{*}$ consists of all terms of degree 2, i.e. $f^{*}=x^{2}-y^{2}+2 x y$.

- Experiment with different f 's. Use http://exacus.mpi-sb.mpg.de/cgi-bin/xalci. cgi to plot the curves $f(x, y)=0$ and $f^{*}(x, y)=0$ near the origin. Formulate a conjecture.
- Prove the conjecture.

0.1 Early Termination of Descartes Algorithm

Consider $p(x)=x^{2}+\delta^{2}=(x-\mathbf{i} \delta)(x+\mathbf{i} \delta)$ with $\delta \approx 0$. This polynomial has a pair of conjugate complex roots at $\pm \mathbf{i} \delta$ and hence separation 2δ. However, $\operatorname{var}(p,(-1,1))=2$ and $\operatorname{var}(p,(-1,0))=\operatorname{var}(p,(0,1))=0$. Verify these statements. Thus the algorithm ends with intervals of length $1 / 2$, although the separation may be arbitrarily small.

Have fun with the solution!

