Computational Geometry and Geometric Computing
Eric Berberich,
Kurt Mehlhorn,
Michael Sagraloff

Winter 2009/2010
Discussion on January 27th.

Exercise 11

Bitstream Descartes for multiple roots

We "extend" the Bitstream Descartes to polynomials with multiple roots: Let f be a polynomial with real coefficients and k denote the maximal multiplicity of a root of f.

- Show that there exists a $w_{0}>0$ such that for all intervals of size $w(I)<w_{0}$ it holds that $\operatorname{var}(f, I) \leq k$. Give a bound on w_{0} in terms of the separation of $f(=$ minimal distance between two distinct roots).
- We call a polynomial generic iff it has a root of multiplicity $k+1=\operatorname{deg} \operatorname{gcd}\left(f, f^{\prime}\right)+1$. Show that, for $k>0$, each generic polynomial has exactly one multiple root z. Furthermore, show that z is real and all remaining roots of f are simple.
- Now, f is a polynomial with bitstream coefficients. Furthermore, we assume that $k:=$ $\operatorname{deg} \operatorname{gcd}\left(f, f^{\prime}\right)$ is known and that we can ask for an arbitrary good approximation \tilde{f}^{*} of the square-free part $f^{*}:=f / \operatorname{gcd}\left(f, f^{\prime}\right)$ of f. Formulate an algorithm to

1. determine isolating intervals I_{1}, \ldots, I_{m} for the real roots of f.
2. refine the intervals I_{j} to any specified size.
3. determine whether f is generic or not.
4. determine which of the intervals I_{j} contains the unique multiple root of f.

Topology of a Planar Curve

Determine the topology of the planar curve $C:=V_{\mathbb{R}}\left(x^{3}-2 x y+2 y^{2}+x^{2}\right)$, that is, compute an isocomplex for C.

Why is this argumentation wrong?

Let C be a planar algebraic curve. We are interested in a shearing of C such that the transformed curve C^{\prime} is in general position, that is, no two critical points are co-vertical. We want to show that all but finitely many shearing directions induce a curve C^{\prime} in general position:

It suffices to find a direction $\phi \in[0,2 \pi)$ such that each line pointing toward the direction ϕ does not pass two or more critical points of C. There exists only finitely many critical points p_{1}, \ldots, p_{m} of C. Let $\phi_{i}, i=1, \ldots,\binom{m}{2}$ denote the directions defined by each pair of
critical points, then, each direction $\phi \neq \phi_{i}$ defines a shearing which induces a curve in general position. This shows our claim.

Have fun with the solution!

