Lecture 1

A First Algorithm: Planar Convex Hulls

We will start with a simple geometric problem, the computatof the convex hull of a finite set of points in
the plane. We will formulate a basic algorithm that condsube planar hull in quadratic time. It accesses
the input points through a single predicate, the oriemapicedicate for three points. We will see how this
predicate can be realized by a simple formula in the pointdinates. Next we discuss two techniques for
improving the running time t®(nlogn), wheren is the number of input points. Collinear points require
special care in convex hull algorithms and hence we call taatageneracy. Finally, the algorithm would
lead directly to an implementation if we had a Real-RAM to disposal.

1.1 The Convex Hull Problem

A set is calledconvexif for any two pointsp andq in the set the entire line segmepd) is contained in the
set, see Figure 1.1. Tlwdnvex hullconvS of a setS of points is the smallest (with respect to set inclusion)
convex set containing, see Figure 1.1. A poinp € Sis called anextreme poinof Sif there is a closed
halfspace containin§such thafp is the only point inSthat lies in the boundary of the halfspace.

From now on we restrict our discussion to the plane. We defiaednvex hull problem as the problem
of computing the extreme points of a finite set of points asaiaally ordered list of point, see Figure 1.1.
The cyclic order is the counter-clockwise order in which éixereme points appear on the hull.

1.2 A First Algorithm

The simplest method for constructing the convex hull wotégatively. We start with the convex hull of the
first three points; we assume for simplicity that the firsethpoints ofSare not collinear and come back to
this assumption in Section 1.5. For every point, we first maitee whether it lies outside the current hull or
not. If it is contained in the current hull, we do nothing. ©thise, the point is an extreme point of the new
hull and we update the hull by constructing the tangents fiteemew point to the old hull, see Figure 1.2a.

How can we determine whether a poinis contained in the current hull? Recall that the current hul
is represented by its cyclic list of extreme points in cotwateckwise order, saywvo, Vi, ..., Vk-1,Vk = Vo).
Consider a paifv;,Vvi;1) of consecutive extreme points. Any point in the current hef on or to the left
of the oriented line/(vi,vi+1) and every point to the right of(vi,vi;1) lies outside the current hull, see
Figure 1.2b. The geometric predicate of locating a poinhwgispect to an oriented line is so important that
we give it a name.

2 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

V1
p
Vo
', Wo
(@) (b

)
Figure 1.1: (a) shows a convex and a non-convex set, (b) stvaavpoint sets and their convex hulls. The
extreme pointsp, Vi, Vo, andvs, respectivelywy andw; are highlighted as solid disks. The pojmties on
the boundary of the hull, but is not an extreme point. Theicydbckwise list of extreme points i, vi,
Vo, V3 andwp, Wy (or any cycle shifts thereof), respectively.

W1

Definition: Let p, g, andr be points in the plane (see Figure 1.3)pH q, let¢(p,q) be the line passing
throughp andqg and oriented fronp to g. Then

+1 if p# qandr lies to the left of¢(p,q)
Orientation(p,q,r) =<0 if p=qor p## qandr lies on/(p,q)
—1 if p# gandr lies to the right of¢(p,q).

If Orientation(p,q,r) =+1 (—1), we say thatp,q,r) form a left (right) turn, ifOrientation(p,q,r) =
+1, the points are collinear. We next specialize to the corwak problem. Assume that; andvi
are consecutive extreme points in the counter-clockwiskeroof extreme points. If lies to the right of
2(vi,Vi+1), we also say that seesthe (counter-clockwise) hull edgev;,1 and that this hull edge igisible
fromr.

THEOREM 1. A point r lies outsideconvs if and only if it can see at least one edgeoifvsS.

Proof. If r can see a hull edge, it is clearly outside cBnAssume next that ¢ convSand letz be the point
in convSclosest ta. If r lies in the interior of some hull edge thercan see this edge. So assume that
an extreme point 08, sayz=v;. Thenr sees at least one of the two hull edges incidemn.to O

We now know how to check whether a new pointies outside the current hull. We simply check
whether it can see some hull edge. We will see more efficietihoas in Sectior??. We next turn to the
update step. We need the notionvegak visibility If r lies to the right of or or/(v;,vi11), we say that
weekly seethe hull segment;v;, 1 and that this segment igeakly visiblefromr.

THEOREM 2. Let (vp,v1,...,W-1) be the sequence of extreme pointsafvS in counter-clockwise order
and assume that¢ convS. The hull edges weakly visible from r form a contiguousemixsnce and so do
the edges that are not weakly visible.

If (Vi,Vit1), ..., (Vj—1,V;) is the subsequence of weakly visible edges, the updateds fabtained by
replacing the subsequenc¢e.1,...,vj_1) by r. The subsequencg;,...,v;j) is taken in the circular sense,
i.e., ifi > j then the subsequence(ig, ..., Vik_1,Vo, ..., Vj).

1.2. AFIRST ALGORITHM 3

Vi

Vo
V2

V3

(b)

Figure 1.2: In (a) the current hull is shown as a polygon whzmendary is indicated by solid segments.
The pointr lies outside the current hull. The tangents fromo the current hull touch the hull in vertices
andv;. The boundary of the new hull consists of the segnmeptfollowed by the part of the old hull from
vj tov;, followed by the segmenvr.

In (b) the oriented lin€(vp,Vv1) is highlighted. Every point to the right of this line lies side the current

hull.
.
r
q r
q /q/‘
P p P c
@) (b) (©)
Figure 1.3: (a) shows a left turn, (b) shows collinear pgiatsl (c) shows a right turn.
Proof. TODO O

Theorems 1 and 2 lead to the incremental convex hull algorithown as Algorithm 1. We still need to
explain how we find all edges weakly visible franand how we updatk. Starting from the visible edge
we move counter-clockwise along the boundary until a noaklyevisible edge is encountered. Similarly,
we move clockwise frone until a non-weakly-visible edge is encountered.

How to update the list? We can delete the vertices(w1,...,Vvj_1) after all visible edges are found,
as suggested in the above sketch (“the off-line strategyieocan delete them concurrently with the search
for weakly visible edges (“the on-line strategy”).

We have now almost completed the description of our first ggomalgorithm. We still need to discuss
the implementation of the orientation predicate. We widl sethe next section that the orientation predicate
can be formulates as a simple arithmetic expression in pomidinates and hence orientation of three points
can be determined in constant time.

Algorithm 1 computes the convex hull afpoints inO(n?) time. For any point, we check all edges
of the current hull for visibility and maybe weak visibilitye also remove zero or more points from the
current hull. Thus any point is processedd(n) time. The bound 00(n?) follows. In Section 1.4 we will

4 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Algorithm 1 Incremental Convex Hull Algorithm
initialize L to a counter-clockwise triangi@, b, c) with a,b,c € S Removea, b, c from S
forall r € Sdo
if there is an edge visible fromr then
determine the sequen¢y;, Vi 1), (Vit1,Vi4+2) ..., (Vj_1,Vj)) of edges that are weakly visible from
replace the subsequen@g,1,...,vj_1)in L byr.
end if
end for

0 q, = (Q’ 0)

Figure 1.4: Proof of Lemma 3.

improve the running time t®(nlogn).

1.3 The Orientation Predicate

LEMMA 3. Let p, g, and r be points in the plane.
(a) The signed area of the triangl@(p,q,r) is given by

1 1 1

Xp Xq X

2
Yo Ygq ¥r

(b) The orientation ofp,q,r) is equal to the sign of the determinant above.

Proof. Part(b) follows immediately from part (a) and the definitafrsigned area. So we only need to show
part (a). We do so in two steps. We first verify the formula for tase thap is the origin and then extend
it to arbitrary p. So let us assume thatis equal to the origin. We need to show that the signed Arek
A(p,q,r) is equal to(Xqyr —XYq)/2.

Let a be the angle between the positixaxis and the rappgand letQ be the length of the segme@,
cf. Figure 1.4. Then cas = X4/Q and simx = y,/Q. Rotating the triangle\ (O, q,r) by —a degrees about
the origin yields a trianglé\ (O, d’,r’) with d = (Q,0) and the same signed area. Thiisz Q-y,/2.

Next observe that, = Rsin(f3 — a), whereR s the length of the segmeftr andp is the angle between
the positivex-axis and the ra@r. Since sii — a) = sinf8 cosa — cosB sina andRcosfB = % andRsin =

1.4. EFFICIENCY 5

Y we conclude that

A = Qvy/2=Q-R-sinB—a)/2
= (Qcosa -RsinB —Qsina - RcosB)/2 = (Xqyr —X%Yq)/2.
This verifies the formula in the case wheayés the origin.
Assume next thap is different from the origin. Translatinginto the origin yields the trianglé\ (O, q,r")

with = g— pandr’ =r — pt . On the other hand subtracting the first column from the dihercolumns
of the determinant yields

1 1 1 1 0 0 %
Xp Xg X | = | Xp Xqg=Xp X —Xp | = ;(,q, Vi
Yo Yg W Yo Ya—Yp Yr—Yp a@
which by the above is twice the area of the translated tre&ang| O

Part (b) of the lemma above is the analytical formula for thergation predicate:

1 py
1 ox q
1oy 1y

Orientation(p, g,) = sign(det) = sign((ck — Pty — By) — (G — py)(rx— B). (1)

We haveOrientation(p,q,r) = +1 (resp.,—1, 0) iff the polyline(p,q,r) represents a left turn (resp., right
turn, collinearity). Interchanging two points in the teépthanges the sign of the orientation.

1.4 Efficiency

Our incremental algorithm for convex hulls runs@in?) time on an input of points. We show how to
improve the running time t®(nlogn). We first observe that the cost of updating the hulis), once it is
know whether the new poimtsees some edge.

Indeed, ifr sees no edge, the old hull is the new hull and the cost of thatagd zero. So assume
thatr sees some edgeof the current hull. We walk frone in both directions as long as edges are weakly
visible. The cost of the walk i®(1+ x), wherex is the number of edges weakly visible framWe then
deletex edges from the convex hull and add two new edges. We cl@fbeto the update and to each edge
removed. Since any edge can be removed only once and sincesamedges are every constructed, the
total charge for the update @&(n).

We next describe two techniques for finding a first visibleeedgto decide that there is none.

1.4.1 A Sweep Algorithm

We simplify the search for a visible edge by processing thetpin lexicographic order. A poirp precedes
a pointq in lexicographic order if eithep has the smallex-coordinate or thex-coordinates are the same
andp has the smalley-coordinate. Sorting points according to lexicographigenritake<O(nlogn) time.

The advantage of processing the points in lexicographierdedtwofold: First, any point is outside the
convex hull of the preceding points and second, one of thesigident to the lexicographic largest vertex
of their hull is visible from it. Thus the search for a visililall edge is trivial and take®(1) time.

THEOREM4. The sweep hull algorithm constructs the convex hull of ntgamthe plane in @nlogn) time.

Lstrictly speaking, we would have to writg= 0+ (q— p) and similarly forr’.

6 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Figure 1.5: The initial convex hull consists of the poiatd, andc. When pointp; is added the edges
ande, are deleted from the hull and the edggsandes are added, and whepp is added to the hull the
edgese; andey are deleted from the hull and the edggsande; are added. The boundary of the current
hull consists of edges;, es, andes in counter-clockwise order. Every edge ever deleted fraerilil points

to the two edges that replaced it, eg. ande, point toes andey.

1.4.2 Incremental Construction

We describe an alternative method for speeding up the séarehvisible hull edge. The idea is to maintain

edit? Boisson-the history of the constructianAgain, we start with the counter-clockwise triangle fodvimy the first three

nec?

points. The algorithm maintains the current hukhayclically linked list of edges and also keeps all edges
that ever belonged to a hull. Every edge that is not on thesntitiull anymore points to the two edges
that replaced it. More precisely, assume tB& the set of points already seen and thad a point outside
the current hullCH(S). There is a chailC of edges of the boundary @&H(S) that do not belong to the
boundary ofCH(SU p). The chain is replaced by the two tangents frpito the previous hull. All edges in

C are made to point to the two new edges, see Figure 1.5.

We are now ready to deal with the insertion of a pgntWe proceed in two steps. We first determine
whetherp is outside the current hull and then update the hulp(g outside).

In order to find out whethep lies outside the current hull, we walk through the historyhafls. We
first determine whethep can see one of the edges of the initial triangle. If it can seedge of the initial
triangle, p lies inside the current hull and we are done. So assumepticanh see an edge of the initial
triangle, saye. If eis an edge of the current hup,lies outside the current hull areds a visible hull edge. If
eis not an edge of the current hull, ketandr; be the two edges that replacesvhenCH(S) was enlarged
to CH(SUQ). pis outsideCH(SUq) if it sees eitherg or ry, see Figure 1.6. Ip sees neitherg norry, we
stop. Otherwise, we setto a visible edge amonig andr; and continue in the same fashion. In this way,
the search either stops or finds a hull edge visible fn®nce we have found such an edge, we continue
as in the basis algorithm.

What is the running time of the incremental constructionafvex hulls? The worst case running time

1.4. EFFICIENCY 7

Figure 1.6:eis a (counter-clockwise) edge of the current hull gnlies to the right of it;e is replaced by
ro andry when the poing is added. Ifp lies neither to the right ofy nor to the right ofr; thenp lies in the
shaded region and hence@H(SU Q).

is O(n?) since the time to insert a point @(n). The time to insert a point i©(n) since there are at most
2(k+ 1) edges after the insertion &fpoints and since every edge is looked at at most once in teeims
process.

The best case running time@n). An example for the best case is when the poits andc span the
hull.

1.4.3 Randomized Incremental Constructioh

The average case running timedénlogn) as we will show next. What are we averaging over? We consider
a fixed but arbitrary se$ of n points and average over timt possible insertion orders. The following
theorem is a special case of the by now famprababilistic analysis of incremental constructiostrted

by Clarkson and Shor [3]. The books [7, 2, 6, 4] contain dethpresentations of the method. The reader
may skip the proof of Theorem 5. Why do we include a proof agjiatn the fact that the method is already
well treated in textbooks? We give a proof because the céistences prove the theorem only for points in
general position. We want to do without the general posigissumption in this book.

THEOREMS. The average running time of the incremental constructiothotfor convex hulls is logn).

Proof. We assume for simplicity that the points$are pairwise distinct. The theorem is true without this
assumption; however, the notation required in the proofasenglumsy.

The running time of the algorithm is linear iff all points Bare collinear. So let us assume tl&at
contains three points that are not collinear. In this casavildirst construct a triangle and then insert the
remaining points. Lep be one of the remaining points. Wheris inserted, we first determine the position
of p with respect to the initial triangle (tim®(1)), then search for a hull edgevisible by p, and finally
update the hull. The time to update the hulQ§1) plus some bounded amount of time for each edge that
is removed from the hull. We conclude that the total time fretisummed over all insertions) spent outside
the search for a visible hull edge@n).

In the search for a visible hull edge we perform tagghtturn(x,y, p) wherex andy are previously
inserted points. We call a testiccessfif it returns true and observe that in each iteration of thdevoop
at most two rightturn tests are performed and that in alattens except the last at least one rightturn test is
successful. It therefore suffices to bound the number ofesisfal rightturn tests.

8 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

-

Figure 1.7:Kyy consists of all points in the shaded region plus the two sald.

For an ordered paifx,y) of distinct points inS we useKy, to denote the set of pointsin S such
that rightturn(x,y, z) is true plu$ the set of points on the line throudk,y) but not betweenx andy, see
Figure 1.7. We uséyy to denote the cardinality dfyy, F to denote the set of pair,y) with ke, =k,
F<« to denote the set of paif,y) with k,y <k, and fy and f< to denote the cardinalities & andF<y,
respectively. We have

LEMMA 6. The average number A of successful rightturn tests is bcwbylgkzlzgk/kz.

Proof. Consider a paifx,y) with k. = k. If some point inKyy is inserted before botk andy are inserted

then(x,y) is never constructed as a hull edge and hence no righttus(eg —) are performed. However,

if x andy are inserted before all points iy then up tok successful rightturn tests,y, z) are performed.
The probability thak andy are inserted before all points Ky y is

21K/ (K+ 2)!

since there arék+ 2)! permutations ok+ 2 points out of which 2! havex andy as their first two elements.
Thus the expected number of successful rightturn {esysz) is bounded by

21Kt/ (k+2)! -k = 2-k/(k+ 1) (k+2) < 2/(K+1).

The argument above applies to any faity) and hence the average number of successful rightturn tests
is bounded by

Z 2fi/(k+1).

K>1
We next writefy = f<x — f<i_1 and obtain
A <5 2Afak—facr)/(k+1) = § 2fa(1/(k+1) - 1/(k+2))
K>1 K>1

= Y 2fa/((k+1)(k+2)).
k>1

O

2The set to be defined next is emptySifs in general position. The probabilistic analysis of imuemtal constructions usually
assumes general position. We do not want to assume it herleesneg have to modify the proof somewhat.

1.4. EFFICIENCY 9

It remains to bound<. We use random sampling to derive a bound.
LEMMA 7. fox < 2€?n-kforallk,1<k<n.

Proof. There are only? pairs of points oBand hence we always have, < n?. Thus, the claim is certainly
true forn <10 ork > n/4.

So assume that > 10 andk < n/4 and letR be a random subset & of sizer. We will fix r later.
Clearly, the convex hull oR consists of at most edges. On the other hand, if for sorey) € F<, x and
y are inR but none of the points iyy is in R, then(x,y) will be an edge of the convex hull & The
probability of this event is

n—i—2 n—k—2
(r—2) (r—2)

>)
() ()
wherei = kyy. Observe that the event occursifindy are chosen and the remaining- 2 points inR are
chosen fronB\ {x,y} \ Kxy. The expected number of edges of the convex huR isf therefore at least

i ()

(+)

Since the number of edges is at moste have

e (M50 =

n n—-k—-2\ nin-1) [n-2
fesr <r>/< r—2 > TN k-2,
where[n)j =n(n—1)---(n—i+1). Next observe that

n—2]_» my "' n-i

r—1 k
nk-25 = -k e[<1+n—k—i>

r-1

= exp(_Z}In(M— k/(n—k— i))> <exp(rk/(n—k—r)),

or

where the last inequality follows from (fh+ x) < x for x> 0 and the fact that/(n—k—i) <k/(n—k—r)
for 0 <i <r—1. Settingr = n/(2k) and using the fact that—k—r > n/4 for k < n/4 andn > 10, we
obtain

fo < €2n?/r = 2k

O
Putting our two lemmas together completes the proof of Témeds
A< 4€ Y nk/k* = O(nlogn).
K>1
O

There are two important situations when the assumptionseatteorem above are satisfied:
e When the points irBare generated according to a probability distribution faings in the plane.

e When the points are randomly permuted before the increrheotetruction process is started. We
then speak aboutrmndomized incremental construction

10 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

1.5 Degeneracy

We assumed that the first three points in the input span a ptogegle. How can we remove this assump-
tion?

In an off-line setting, i.e., all points are available atgnam start, we scan over the points once. phet
be the first point. We scan until we find a pointhat is different fromp. If all input points are equal tp,
the convex hull is equal to the set consisting onlypofSo assume we have two distinct poiptandg. We
continue scanning until we find a pointhat is not collinear tg andg. If there is no such point, the convex
hull is contained in the line passing througlandqg and we simply need to find the two extreme points on
the line. If there is such a point, we have found the initigrtgle.

In an on-line setting, we have to work slightly harder. Weiatize the hull to{p}. As long as input
points are equal t@, there is nothing to do. As soon, as we encounter a ppififferent fromp, we know
that the hull is at least one-dimensional. The current lsuthe line segmenpg. As long as input points
are collinear top andg, the hull stays a segment and we update it accordingly. Omdepait pointr that
is not collinear withp andq comes along, we know that the hull is two-dimensional and wiéch to the
algorithm discussed in the preceding sections.

If no three points are collinear, the assumption is triyiatisfied. Also, there is no need to distinguish
between visible and weakly visible edges as there are noseiihge are weakly visible but not visible.
Collinear points make the formulation of convex hull algjoms more complex and therefore we call them
adegenerate configuratiofor the convex hull problem.

Geometric algorithms are frequently formulated undemte-degeneracy assumptiongeneral posi-
tion assumptionThe input contains no degenerate configuration. In Lec?®@ree will study perturbation
as a general technique for ensuring general position.

1.6 The Real-RAM

We have an algorithm for planar convex hulldo we have an implementation, i.e., is it straight-forwand t
convert the discussion into a running program in a populasgramming language? The answer is No.

In the formulation of the algorithm we have tacitly assumkd Real-RAMmodel of computation.
A Real-RAM is a random access machine with the capability asfdling real numbers. Of course, the
operations on real numbers follow the laws of mathematibe Real-RAM model is the natural computing
model for geometric computing and numerical analysis. radtegeometric objects are usually specified by
real parameters: point coordinates are reals, the radiasiotle is a real, plane coefficients are reals, and
SO on.

Unfortunately, one cannot buy a Real-RAM. Real computersatocome with real arithmetic. They
provide only floating point arithmetic and bounded integahenetic. We will study the effect of floating
point arithmetic on geometry in the next lecture. We will Hegt we are far from an implementation.

In Lectures?? to ?? we will then discuss the efficient realization of a Real-RAd/the extent needed
by the convex hull algorithm and any other geometric alganithat deal only with linear objects.

1.7 Historical Notes

The sweep hull algorithm was proposed by Andrew [1]; it refina earlier algorithm of Graham [5].
randomized incremental algorithm [3]. Dimension jumpg fins

1.8. IMPLEMENTATION NOTES

1.8 Implementation Notes

1.9 Exercises

11

12

LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Bibliography

[1] A. Andrew. Another efficient algorithm for convex hulla two dimensions.Information Processing
Letters 9:216-219, 1979.

[2] J.-D. Boissonnat and M. YvinecAlgorithmic Geometry Cambridge University Press, Cambridge,
1998.

[3] K. Clarkson and P. Shor. Applications of random sampiimgomputational geometry, llJournal of
Discrete and Computational Geomet#y387—421, 1989.

[4] M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzkogfomputational Geometry: Algorithms
and Applications Springer, 1997.

[5] R. L. Graham. An efficient algorithm for determining thenwex hulls of a finite point setnformation
Processing Lettersl:132-133, 1972.

[6] R. Motwani and P. RaghavaiRandomized AlgorithmsCambridge University Press, 1995.

[7] K. Mulmuley. Computational GeometryPrentice Hall, 1994.

13

