
Lecture 1

A First Algorithm: Planar Convex Hulls

We will start with a simple geometric problem, the computation of the convex hull of a finite set of points in
the plane. We will formulate a basic algorithm that constructs the planar hull in quadratic time. It accesses
the input points through a single predicate, the orientation predicate for three points. We will see how this
predicate can be realized by a simple formula in the point coordinates. Next we discuss two techniques for
improving the running time toO(nlogn), wheren is the number of input points. Collinear points require
special care in convex hull algorithms and hence we call thema degeneracy. Finally, the algorithm would
lead directly to an implementation if we had a Real-RAM to ourdisposal.

1.1 The Convex Hull Problem

A set is calledconvexif for any two pointsp andq in the set the entire line segmentpq is contained in the
set, see Figure 1.1. Theconvex hullconvSof a setSof points is the smallest (with respect to set inclusion)
convex set containingS, see Figure 1.1. A pointp ∈ S is called anextreme pointof S if there is a closed
halfspace containingSsuch thatp is the only point inSthat lies in the boundary of the halfspace.

From now on we restrict our discussion to the plane. We define the convex hull problem as the problem
of computing the extreme points of a finite set of points as a cyclically ordered list of point, see Figure 1.1.
The cyclic order is the counter-clockwise order in which theextreme points appear on the hull.

1.2 A First Algorithm

The simplest method for constructing the convex hull works iteratively. We start with the convex hull of the
first three points; we assume for simplicity that the first three points ofSare not collinear and come back to
this assumption in Section 1.5. For every point, we first determine whether it lies outside the current hull or
not. If it is contained in the current hull, we do nothing. Otherwise, the point is an extreme point of the new
hull and we update the hull by constructing the tangents fromthe new point to the old hull, see Figure 1.2a.

How can we determine whether a pointr is contained in the current hull? Recall that the current hull
is represented by its cyclic list of extreme points in counter-clockwise order, say(v0,v1, . . . ,vk−1,vk = v0).
Consider a pair(vi ,vi+1) of consecutive extreme points. Any point in the current hulllies on or to the left
of the oriented lineℓ(vi ,vi+1) and every point to the right ofℓ(vi ,vi+1) lies outside the current hull, see
Figure 1.2b. The geometric predicate of locating a point with respect to an oriented line is so important that
we give it a name.

1

2 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

v0

v3

v2

v1

w0

w1

p

(a) (b)

Figure 1.1: (a) shows a convex and a non-convex set, (b) showstwo point sets and their convex hulls. The
extreme pointsv0, v1, v2, andv3, respectivelyw0 andw1 are highlighted as solid disks. The pointp lies on
the boundary of the hull, but is not an extreme point. The cyclic clockwise list of extreme points isv0, v1,
v2, v3 andw0, w1 (or any cycle shifts thereof), respectively.

Definition: Let p, q, andr be points in the plane (see Figure 1.3). Ifp 6= q, let ℓ(p,q) be the line passing
throughp andq and oriented fromp to q. Then

Orientation(p,q, r) =











+1 if p 6= q andr lies to the left ofℓ(p,q)

0 if p = q or p 6= q andr lies onℓ(p,q)

−1 if p 6= q andr lies to the right ofℓ(p,q).

If Orientation(p,q, r) = +1 (−1), we say that(p,q, r) form a left (right) turn, ifOrientation(p,q, r) =
+1, the points are collinear. We next specialize to the convexhull problem. Assume thatvi and vi+1

are consecutive extreme points in the counter-clockwise order of extreme points. Ifr lies to the right of
ℓ(vi ,vi+1), we also say thatr seesthe (counter-clockwise) hull edgevivi+1 and that this hull edge isvisible
from r.

THEOREM 1. A point r lies outsideconvS if and only if it can see at least one edge ofconvS.

Proof. If r can see a hull edge, it is clearly outside convS. Assume next thatr 6∈ convSand letzbe the point
in convSclosest tor. If r lies in the interior of some hull edge thenr can see this edge. So assume thatz is
an extreme point ofS, sayz= vi . Thenr sees at least one of the two hull edges incident tovi .

We now know how to check whether a new pointr lies outside the current hull. We simply check
whether it can see some hull edge. We will see more efficient methods in Section??. We next turn to the
update step. We need the notion ofweak visibility. If r lies to the right of or onℓ(vi ,vi+1), we say thatr
weekly seesthe hull segmentvivi+1 and that this segment isweakly visiblefrom r.

THEOREM 2. Let (v0,v1, . . . ,vk−1) be the sequence of extreme points ofconvS in counter-clockwise order
and assume that r6∈ convS. The hull edges weakly visible from r form a contiguous subsequence and so do
the edges that are not weakly visible.

If (vi ,vi+1), . . . , (v j−1,v j) is the subsequence of weakly visible edges, the updated hullis obtained by
replacing the subsequence(vi+1, . . . ,v j−1) by r. The subsequence(vi , . . . ,v j) is taken in the circular sense,
i.e., if i > j then the subsequence is(vi , . . . ,vk−1,v0, . . . ,v j).

1.2. A FIRST ALGORITHM 3

r

vi

v j

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�v0

v3

v2

v1

(a) (b)

Figure 1.2: In (a) the current hull is shown as a polygon whoseboundary is indicated by solid segments.
The pointr lies outside the current hull. The tangents fromr to the current hull touch the hull in verticesvi

andv j . The boundary of the new hull consists of the segmentrv j , followed by the part of the old hull from
v j to vi , followed by the segmentvir.
In (b) the oriented lineℓ(v0,v1) is highlighted. Every point to the right of this line lies outside the current
hull.

(a) (b) (c)ppp

qq
q r

r
r

Figure 1.3: (a) shows a left turn, (b) shows collinear points, and (c) shows a right turn.

Proof. TODO

Theorems 1 and 2 lead to the incremental convex hull algorithm shown as Algorithm 1. We still need to
explain how we find all edges weakly visible fromr and how we updateL. Starting from the visible edgee,
we move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly,
we move clockwise frome until a non-weakly-visible edge is encountered.

How to update the listL? We can delete the vertices in(vi+1, . . . ,v j−1) after all visible edges are found,
as suggested in the above sketch (“the off-line strategy”) or we can delete them concurrently with the search
for weakly visible edges (“the on-line strategy”).

We have now almost completed the description of our first geometric algorithm. We still need to discuss
the implementation of the orientation predicate. We will see in the next section that the orientation predicate
can be formulates as a simple arithmetic expression in pointcoordinates and hence orientation of three points
can be determined in constant time.

Algorithm 1 computes the convex hull ofn points inO(n2) time. For any pointr, we check all edges
of the current hull for visibility and maybe weak visibility. We also remove zero or more points from the
current hull. Thus any point is processed inO(n) time. The bound ofO(n2) follows. In Section 1.4 we will

4 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Algorithm 1 Incremental Convex Hull Algorithm
initialize L to a counter-clockwise triangle(a,b,c) with a,b,c∈ S. Removea,b,c from S.
for all r ∈ Sdo

if there is an edgeevisible fromr then
determine the sequence((vi ,vi+1),(vi+1,vi+2) . . . ,(v j−1,v j)) of edges that are weakly visible fromr.
replace the subsequence(vi+1, . . . ,v j−1) in L by r.

end if
end for

0

r

p′
q

q′ = (Q,0)

α

β

Figure 1.4: Proof of Lemma 3.

improve the running time toO(nlogn).

1.3 The Orientation Predicate

LEMMA 3. Let p, q, and r be points in the plane.
(a) The signed area of the triangle△(p,q, r) is given by

1
2

∣

∣

∣

∣

∣

∣

1 1 1
xp xq xr

yp yq yr

∣

∣

∣

∣

∣

∣

(b) The orientation of(p,q, r) is equal to the sign of the determinant above.

Proof. Part(b) follows immediately from part (a) and the definitionof signed area. So we only need to show
part (a). We do so in two steps. We first verify the formula for the case thatp is the origin and then extend
it to arbitrary p. So let us assume thatp is equal to the origin. We need to show that the signed areaA of
△(p,q, r) is equal to(xqyr −xryq)/2.

Let α be the angle between the positivex-axis and the rayOqand letQ be the length of the segmentOq,
cf. Figure 1.4. Then cosα = xq/Q and sinα = yq/Q. Rotating the triangle△(O,q, r) by−α degrees about
the origin yields a triangle△(O,q′, r ′) with q′ = (Q,0) and the same signed area. Thus,A = Q ·yr ′/2.

Next observe thaty′r = Rsin(β −α), whereR is the length of the segmentOr andβ is the angle between
the positivex-axis and the rayOr. Since sin(β −α)= sinβ cosα−cosβ sinα andRcosβ = xr andRsinβ =

1.4. EFFICIENCY 5

yr we conclude that

A = Q ·yr ′/2 = Q ·R·sin(β −α)/2

= (Qcosα ·Rsinβ −Qsinα ·Rcosβ)/2 = (xqyr −xryq)/2.

This verifies the formula in the case wherep is the origin.
Assume next thatp is different from the origin. Translatingp into the origin yields the triangle△(O,q′, r ′)

with q′ = q− p andr ′ = r − p1 . On the other hand subtracting the first column from the othertwo columns
of the determinant yields

∣

∣

∣

∣

∣

∣

1 1 1
xp xq xr

yp yq yr

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 0
xp xq−xp xr −xp

yq yq−yp yr −yp

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

xq′ xr ′

yq′ yr ′

∣

∣

∣

∣

which by the above is twice the area of the translated triangle.

Part (b) of the lemma above is the analytical formula for the orientation predicate:

Orientation(p,q, r) = sign(det





1 px py

1 qx qy

1 rx ry



) = sign((qx− px)(ry− py)− (qy− py)(rx− px)). (1)

We haveOrientation(p,q, r) = +1 (resp.,−1, 0) iff the polyline(p,q, r) represents a left turn (resp., right
turn, collinearity). Interchanging two points in the triple changes the sign of the orientation.

1.4 Efficiency

Our incremental algorithm for convex hulls runs inO(n2) time on an input ofn points. We show how to
improve the running time toO(nlogn). We first observe that the cost of updating the hull isO(n), once it is
know whether the new pointr sees some edge.

Indeed, ifr sees no edge, the old hull is the new hull and the cost of the update is zero. So assume
that r sees some edgee of the current hull. We walk frome in both directions as long as edges are weakly
visible. The cost of the walk isO(1+ x), wherex is the number of edges weakly visible fromr. We then
deletex edges from the convex hull and add two new edges. We chargeO(1) to the update and to each edge
removed. Since any edge can be removed only once and since at most 2n edges are every constructed, the
total charge for the update isO(n).

We next describe two techniques for finding a first visible edge or to decide that there is none.

1.4.1 A Sweep Algorithm

We simplify the search for a visible edge by processing the points in lexicographic order. A pointp precedes
a pointq in lexicographic order if eitherp has the smallerx-coordinate or thex-coordinates are the same
andp has the smallery-coordinate. Sorting points according to lexicographic order takesO(nlogn) time.

The advantage of processing the points in lexicographic order is twofold: First, any point is outside the
convex hull of the preceding points and second, one of the edges incident to the lexicographic largest vertex
of their hull is visible from it. Thus the search for a visiblehull edge is trivial and takesO(1) time.

THEOREM 4. The sweep hull algorithm constructs the convex hull of n points in the plane in O(nlogn) time.

1Strictly speaking, we would have to writeq′ = 0+(q− p) and similarly forr ′.

6 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

a

b

c

p1

p2

e1
e2

e3
e4

e5

e6
e7

Figure 1.5: The initial convex hull consists of the pointsa, b, andc. When pointp1 is added the edgese1

ande2 are deleted from the hull and the edgese4 ande5 are added, and whenp2 is added to the hull the
edgese3 ande4 are deleted from the hull and the edgese6 ande7 are added. The boundary of the current
hull consists of edgese7, e5, ande6 in counter-clockwise order. Every edge ever deleted from the hull points
to the two edges that replaced it, e.g.,e3 ande4 point toe6 ande7.

1.4.2 Incremental Construction

We describe an alternative method for speeding up the searchfor a visible hull edge. The idea is to maintain
thehistory of the construction. Again, we start with the counter-clockwise triangle formed by the first threecredit? Boisson-

Yvinec? points. The algorithm maintains the current hull asa cyclically linked list of edges and also keeps all edges
that ever belonged to a hull. Every edge that is not on the current hull anymore points to the two edges
that replaced it. More precisely, assume thatS is the set of points already seen and thatp is a point outside
the current hullCH(S). There is a chainC of edges of the boundary ofCH(S) that do not belong to the
boundary ofCH(S∪ p). The chain is replaced by the two tangents fromp to the previous hull. All edges in
C are made to point to the two new edges, see Figure 1.5.

We are now ready to deal with the insertion of a pointp. We proceed in two steps. We first determine
whetherp is outside the current hull and then update the hull (ifp is outside).

In order to find out whetherp lies outside the current hull, we walk through the history ofhulls. We
first determine whetherp can see one of the edges of the initial triangle. If it can see no edge of the initial
triangle, p lies inside the current hull and we are done. So assume thatp can see an edge of the initial
triangle, saye. If e is an edge of the current hull,p lies outside the current hull ande is a visible hull edge. If
e is not an edge of the current hull, letr0 andr1 be the two edges that replacedewhenCH(S) was enlarged
to CH(S∪q). p is outsideCH(S∪q) if it sees eitherr0 or r1, see Figure 1.6. Ifp sees neitherr0 nor r1, we
stop. Otherwise, we sete to a visible edge amongr0 andr1 and continue in the same fashion. In this way,
the search either stops or finds a hull edge visible fromp. Once we have found such an edge, we continue
as in the basis algorithm.

What is the running time of the incremental construction of convex hulls? The worst case running time

1.4. EFFICIENCY 7

CH(S)

q

p
e

r0

r1

Figure 1.6:e is a (counter-clockwise) edge of the current hull andp lies to the right of it;e is replaced by
r0 andr1 when the pointq is added. Ifp lies neither to the right ofr0 nor to the right ofr1 thenp lies in the
shaded region and hence inCH(S∪q).

is O(n2) since the time to insert a point isO(n). The time to insert a point isO(n) since there are at most
2(k+1) edges after the insertion ofk points and since every edge is looked at at most once in the insertion
process.

The best case running time isO(n). An example for the best case is when the pointsa, b, andc span the
hull.

1.4.3 Randomized Incremental Construction∗

The average case running time isO(nlogn) as we will show next. What are we averaging over? We consider
a fixed but arbitrary setS of n points and average over then! possible insertion orders. The following
theorem is a special case of the by now famousprobabilistic analysis of incremental constructionsstarted
by Clarkson and Shor [3]. The books [7, 2, 6, 4] contain detailed presentations of the method. The reader
may skip the proof of Theorem 5. Why do we include a proof at allgiven the fact that the method is already
well treated in textbooks? We give a proof because the cited references prove the theorem only for points in
general position. We want to do without the general positionassumption in this book.

THEOREM5. The average running time of the incremental construction method for convex hulls is O(nlogn).

Proof. We assume for simplicity that the points inSare pairwise distinct. The theorem is true without this
assumption; however, the notation required in the proof is more clumsy.

The running time of the algorithm is linear iff all points inS are collinear. So let us assume thatS
contains three points that are not collinear. In this case wewill first construct a triangle and then insert the
remaining points. Letp be one of the remaining points. Whenp is inserted, we first determine the position
of p with respect to the initial triangle (timeO(1)), then search for a hull edgee visible by p, and finally
update the hull. The time to update the hull isO(1) plus some bounded amount of time for each edge that
is removed from the hull. We conclude that the total time (= time summed over all insertions) spent outside
the search for a visible hull edge isO(n).

In the search for a visible hull edge we perform testsrightturn(x,y, p) wherex and y are previously
inserted points. We call a testsuccessfulif it returns true and observe that in each iteration of the while-loop
at most two rightturn tests are performed and that in all iterations except the last at least one rightturn test is
successful. It therefore suffices to bound the number of successful rightturn tests.

8 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

y

x

Figure 1.7:Kx,y consists of all points in the shaded region plus the two solidrays.

For an ordered pair(x,y) of distinct points inS we useKx,y to denote the set of pointsz in S such
that rightturn(x,y,z) is true plus2 the set of points on the line through(x,y) but not betweenx andy, see
Figure 1.7. We usekxy to denote the cardinality ofKx,y, Fk to denote the set of pairs(x,y) with kxy = k,
F≤k to denote the set of pairs(x,y) with kxy ≤ k, and fk and f≤k to denote the cardinalities ofFk andF≤k,
respectively. We have

LEMMA 6. The average number A of successful rightturn tests is bounded by∑k≥1 2 f≤k/k2.

Proof. Consider a pair(x,y) with kxy = k. If some point inKx,y is inserted before bothx andy are inserted
then(x,y) is never constructed as a hull edge and hence no rightturn tests (x,y,−) are performed. However,
if x andy are inserted before all points inKx,y then up tok successful rightturn tests(x,y,z) are performed.

The probability thatx andy are inserted before all points inKx,y is

2!k!/(k+2)!

since there are(k+2)! permutations ofk+2 points out of which 2!k! havex andy as their first two elements.
Thus the expected number of successful rightturn tests(x,y,z) is bounded by

2!k!/(k+2)! ·k = 2·k/(k+1)(k+2) < 2/(k+1).

The argument above applies to any pair(x,y) and hence the average number of successful rightturn tests
is bounded by

∑
k≥1

2 fk/(k+1).

We next writefk = f≤k− f≤k−1 and obtain

A ≤ ∑
k≥1

2(f≤k− f≤k−1)/(k+1) = ∑
k≥1

2 f≤k(1/(k+1)−1/(k+2))

= ∑
k≥1

2 f≤k/((k+1)(k+2)).

2The set to be defined next is empty ifS is in general position. The probabilistic analysis of incremental constructions usually
assumes general position. We do not want to assume it here andhence have to modify the proof somewhat.

1.4. EFFICIENCY 9

It remains to boundf≤k. We use random sampling to derive a bound.

LEMMA 7. f≤k ≤ 2e2n·k for all k, 1≤ k≤ n.

Proof. There are onlyn2 pairs of points ofSand hence we always havef≤k ≤ n2. Thus, the claim is certainly
true forn≤ 10 ork≥ n/4.

So assume thatn ≥ 10 andk ≤ n/4 and letR be a random subset ofS of size r. We will fix r later.
Clearly, the convex hull ofR consists of at mostr edges. On the other hand, if for some(x,y) ∈ F≤k, x and
y are inR but none of the points inKx,y is in R, then(x,y) will be an edge of the convex hull ofR. The
probability of this event is

(n−i−2
r−2

)

(n
r

) ≥

(n−k−2
r−2

)

(n
r

) ,

wherei = kx,y. Observe that the event occurs ifx andy are chosen and the remainingr −2 points inR are
chosen fromS\{x,y}\Kx,y. The expected number of edges of the convex hull ofR is therefore at least

f≤k ·

(n−k−2
r−2

)

(n
r

) .

Since the number of edges is at mostr we have

f≤k ·

(

n−k−2
r −2

)

/

(

n
r

)

≤ r

or

f≤k ≤ r ·

(

n
r

)

/

(

n−k−2
r −2

)

= r ·
n(n−1)

r(r −1)
·

[n−2]r−2

[n−k−2]r−2
,

where[n]i = n(n−1) · · · (n− i +1). Next observe that

[n−2]r−2

[n−k−2]r−2
≤

[n]r
[n−k]r

=
r−1

∏
i=0

n− i
n−k− i

=
r−1

∏
i=0

(

1+
k

n−k− i

)

= exp

(

r−1

∑
i=0

ln(1+k/(n−k− i))

)

≤ exp(rk/(n−k− r)) ,

where the last inequality follows from ln(1+x) ≤ x for x≥ 0 and the fact thatk/(n−k− i) ≤ k/(n−k− r)
for 0 ≤ i ≤ r − 1. Settingr = n/(2k) and using the fact thatn− k− r ≥ n/4 for k ≤ n/4 andn ≥ 10, we
obtain

f≤k ≤ e2n2/r = 2e2nk.

Putting our two lemmas together completes the proof of Theorem 5

A≤ 4e2 ∑
k≥1

nk/k2 = O(nlogn).

There are two important situations when the assumptions of the theorem above are satisfied:

• When the points inSare generated according to a probability distribution for points in the plane.

• When the points are randomly permuted before the incremental construction process is started. We
then speak about arandomized incremental construction.

10 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

1.5 Degeneracy

We assumed that the first three points in the input span a proper triangle. How can we remove this assump-
tion?

In an off-line setting, i.e., all points are available at program start, we scan over the points once. Letp
be the first point. We scan until we find a pointq that is different fromp. If all input points are equal top,
the convex hull is equal to the set consisting only ofp. So assume we have two distinct pointsp andq. We
continue scanning until we find a pointr that is not collinear top andq. If there is no such point, the convex
hull is contained in the line passing throughp andq and we simply need to find the two extreme points on
the line. If there is such a point, we have found the initial triangle.

In an on-line setting, we have to work slightly harder. We initialize the hull to{p}. As long as input
points are equal top, there is nothing to do. As soon, as we encounter a pointq different fromp, we know
that the hull is at least one-dimensional. The current hull is the line segmentpq. As long as input points
are collinear top andq, the hull stays a segment and we update it accordingly. Once an input pointr that
is not collinear withp andq comes along, we know that the hull is two-dimensional and we switch to the
algorithm discussed in the preceding sections.

If no three points are collinear, the assumption is trivially satisfied. Also, there is no need to distinguish
between visible and weakly visible edges as there are no edges that are weakly visible but not visible.
Collinear points make the formulation of convex hull algorithms more complex and therefore we call them
adegenerate configurationfor the convex hull problem.

Geometric algorithms are frequently formulated under thenon-degeneracy assumptionor general posi-
tion assumption: The input contains no degenerate configuration. In Lecture?? we will study perturbation
as a general technique for ensuring general position.

1.6 The Real-RAM

We have an algorithm for planar convex hulls.Do we have an implementation, i.e., is it straight-forward to
convert the discussion into a running program in a popular programming language? The answer is No.

In the formulation of the algorithm we have tacitly assumed the Real-RAMmodel of computation.
A Real-RAM is a random access machine with the capability of handling real numbers. Of course, the
operations on real numbers follow the laws of mathematics. The Real-RAM model is the natural computing
model for geometric computing and numerical analysis. After all geometric objects are usually specified by
real parameters: point coordinates are reals, the radius ofa circle is a real, plane coefficients are reals, and
so on.

Unfortunately, one cannot buy a Real-RAM. Real computers donot come with real arithmetic. They
provide only floating point arithmetic and bounded integer arithmetic. We will study the effect of floating
point arithmetic on geometry in the next lecture. We will seethat we are far from an implementation.

In Lectures?? to ?? we will then discuss the efficient realization of a Real-RAM to the extent needed
by the convex hull algorithm and any other geometric algorithm that deal only with linear objects.

1.7 Historical Notes

The sweep hull algorithm was proposed by Andrew [1]; it refines an earlier algorithm of Graham [5].
randomized incremental algorithm [3]. Dimension jumps first in

1.8. IMPLEMENTATION NOTES 11

1.8 Implementation Notes

1.9 Exercises

12 LECTURE 1. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Bibliography

[1] A. Andrew. Another efficient algorithm for convex hulls in two dimensions.Information Processing
Letters, 9:216–219, 1979.

[2] J.-D. Boissonnat and M. Yvinec.Algorithmic Geometry. Cambridge University Press, Cambridge,
1998.

[3] K. Clarkson and P. Shor. Applications of random samplingin computational geometry, II.Journal of
Discrete and Computational Geometry, 4:387–421, 1989.

[4] M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geometry: Algorithms
and Applications. Springer, 1997.

[5] R. L. Graham. An efficient algorithm for determining the convex hulls of a finite point set.Information
Processing Letters, 1:132–133, 1972.

[6] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, 1995.

[7] K. Mulmuley. Computational Geometry. Prentice Hall, 1994.

13

