Lecturel

A First Implementation

We come to the implementation of our convex hull algorithnhene is one choice to be madelow do
we realize real arithmeticAWe make the obvious choice. We use what computers offer ustirfgppoint
arithmetic, i.e.,

Implementation of a Real RAM = RAM + double precision floatjpgjnt arithmetic.

Double precision floating point arithmetic is governed bg tBEEE standard 754-1985 [6]). Modern
processors implement this standard and programming lgeguarovide it under names such as “double”

(CH+), “XXX” (Java), TODO.. Floating point arithmetic is the widrorse for numerical computations. TODO
Double precision floating point numbers have the form

+ m2°

wherem= 1L.mym,...msp, my € {0, 1}, is the mantissa in binary areis the exponent satisfying 1023 <

e < 10241 We discuss floating point arithmetic in detail in Lectt®@® At this point it suffices to know
that arithmetic in a floating point system is approximate and naot The result of any floating point
arithmetic operation is the exact result of the operatiamded to the nearest double (with ties broken using
some fixed rule). For example, in a decimal floating pointesystvith a mantissa of two places, we have

0.36-0.11=10.40

since the exact result®96 is rounded to the approximate result@

We will see in this lecture that floating point arithmetic ip@re substitute for real arithmetic and that
the floating point implementation of our algorithm can proglwery strange results. We hope that, after
seeing these examples, our students look forward to thé@ohechniques that we present in later lectures.
The core of a&C++ implementation of our algorithm is given in Section 1.2. Tak code can be found in
the companion web pagdeof article [9] on which this lecture is based.

1.1 The Geometry of Float-Orient

Our convex hull algorithms uses the orientation predicateahree points. In the last lecture we derived the
following formula for the orientation predicate. For thie@ints p = (px, Py), 0 = (0x,Qy), andr = (ry,ry)

1we ignore here so calletenormalizedhumbers that play no role in our experiments and arguments.
2http://www.mpi-inf.mpg.de/departments/d1/ClassroomE xamples/
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0.50000000000002531 0.5
( 0.5000000000000171) 0.5
17.300000000000001 8.800000000000000
17.300000000000001) ( s.soooooooooooooo;)
24,00000000000005 121
( 24.000000000000051776; ( 121 )

(b) (©

Figure 1.1: The weird geometry of the float-orientation jmatk: The figure shows the results of
float.orient(px + Xy, py + Yu,q,r) for 0 < X,Y < 255, whereuy, = uy = 2753 is the increment between
adjacent floating-point numbers in the considered range.r&sult is color coded: Yellow (red, blue, resp.)
pixels represent collinear (negative, positive, respgration. The line througl andr is shown in black.

in the plane let
Orientation(p,d,r) = sign((ox — Px)(ry — Py) — (dy — Py) (r'x— Px))- (1)

We haveOrientation(p,q,r) = +1 (resp.,—1, 0) iff the polyline(p,q,r) represents a left turn (resp., right
turn, collinearity). When the orientation predicate is implemented in this way evaluated with floating-
point arithmetic, we call it floabrient(p, g, r) to distinguish it from the ideal predicate.

What is the geometry dfoat orient, i.e., which triples of points are classified as left-tumght-turns, or
collinear? The following type of experiment addresses thestjon: We choose three poingsq, andr and
then computdloat orient(p’,q,r) for pointsp’ in the floating-point neighborhood @ More precisely, let
uy be the increment between adjacent floating-point numbehgirange right opy; for exampleu, =23
if px=3 andux=4-2"%3if p,=2=4-3. Analogously, we defing,. We consider

float orient((px+ Xuy, py+YUW),q,r)

for 0 < X,Y < 255. We visualize the resulting 256256 array of signs as a 256256 grid of colored pixels:
A yellow (red, blue) pixel represents collinear (negatpesitive, respectively) orientation. In the figures in
this section we also indicate an approximation of the exaetthroughg andr in black.

Figure 1.1(a) shows the result of our first experiment: Wethiedine defined by the points= (12,12)
andr = (24,24) and query it neap = (0.5,0.5). We urge the reader to pause for a moment and to sketch
what he/she expects to see. The authors expected to seewa bealhd around the diagonal with nearly
straight boundaries. Even for points with such simple coetgs the geometry dfoatorient is quite
weird: the set of yellow points (= the points classified astmnline) does not resemble a straight line and
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Figure 1.2: We repeat the example from Figure 1.1(b) and shewesult for all three distinct choices for
the pivot; namelyp on the left,q in the middle, and on the right. All figures exhibit sign reversal.

the sets of red or blue points do not resemble half-spacessvéfe have points that change the side of the
line, i.e., are lying left of the line and being classified igbt of the line and vice versa.

In Figures 1.1(b) and (c) we have given our base points coatel$ with more bits of precision by adding
some digits behind the binary point. This enhances the datioa effects in the evaluation dloat orient
and leads to even more striking pictures. In (b), the recorepoks like a step function at first sight. Note
however, it is not monotone, has yellow rays extending ihtand red lines extruding from it. The yellow
region (= collinear-region) forms blocks along the lineraBgely enough, these blocks are separated by
blue and red lines. Finally, many points change sides. lmr€igc), we have yellow blocks of varying
sizes along the diagonal, thin yellow and partly red lineterding into the blue region (similarly for the
red region), red points (the left upper corners of the yelitmctures extending into the blue region) deep
inside the blue region, and isolated yellow points almo$t ddits away from the diagonal.

All diagrams in Figure 1.1 exhibit block structure. We nowpkn why: We focus on one dimension,
i.e., assume we keep fixed and vary onlyX. We evaluatdloatorient((pyx+ Xuy, py+YW),q,r) for 0 <
X < 255, whereuy = uy is the increment between adjacent floating-point numbetisarconsidered range.
Recall thatOrientation(p,q,r) = sign((ax— px)(ry — Py) — (Gy — Py) (rx— Px)). We incur round-off errors in
the additions/subtractions and also in the multiplicagioBonsider first one of the differences, Spy- px.

In (a), we havey, = 12 andpx ~ 0.5. Since 12 has four binary digits, we lose the last four HitX in the
subtraction, in other words, the result of the subtractipa py is constant for 2 consecutive values of.
Because of rounding to nearest, the intervals of constdnéaae[8,23], [24,39], [40,55 .. .. Similarly, the
floating-point result of, — py is constant for 2 consecutive values &f. Because of rounding to nearest, the
intervals of constant value aj£6,47], [48,69, .. .. Overlaying the two progressions gives interyag 23],
[24,39], [40,47], 48,55, ... and this explains the structure we see in the rows of{&) see short blocks
of length 8, 16, 24, ...in (a). In (b) and (c), the situatiorségnewhat more complicated. It is again true
that we have intervals foX, where the results of the subtractions are constant. How&neeq andr have
more complex coordinates, the relative shifts of thesevate are different and hence we see narrow and
broad features.

Exercise 0.1: Download the code from the web page of the course and performaown experiments.
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(b)

Figure 1.3: Examples of the impact of extended double astionWe repeat the example from Figure 1.1(b)
with different implementations of the orientation te) We evaluatgagx — py)(ry — py) and(cy — py)(rx—

px) in extended double arithmetic, convert their values to teyibecision, and compare thenfb) We
evaluatesign((ax — px)(ry — Py) — (dy — Py) (rx— Px)) in extended double arithmetic. For both experiments,
we usedly = Uy = 2753, the same as for the regular double precision examples imré iy 1. Note that there
are no collinearities (yellow points) reported(lr).

Choice of a Pivat Point: The orientation predicate is the sign of a three-by-threerdenant and this
determinant may be evaluated in different waysfldat orient as defined above we use the pgmas the
pivot, i.e., we subtract the row representing the paritom the other rows and reduce the problem to the
evaluation of a two-by-two determinant. Similarly, we mdyose one of the other points as the pivot.
Figure 1.2 displays the effect of the different choices efpivot point on the example of Figure 1.1(b). The
choice of the pivot makes a difference, but nonetheless ébengtry remains non-trivial and sign reversals
happen for all three choices. We will see in Lect@fethat the center point w.r.t. thecoordinate (or the
y-coordinate) is the best choice for the pivot. However, naiad of pivot can avoid all sign errors.

Extended Double Precision: Some architectures, for example, Intel Pentium processéfies IEEE ex-
tended double precision with a 64 bit mantissa in an 80 bitesgmntation. Does this additional precision
help? Not really, as the examples in Figure 1.3 suggest. Qglet@mrgue that the number of misclassified
points decreases, but the geometnfloét_orient remains fractured and exploitable for failures similar to
those that we develop below for double precision arithmetic

1.2 Implementation of the Convex Hull Algorithm

We describe ouCt+ reference implementation of our simple incremental athori We give the details
necessary to reproduce our results, for example, the exaatmeter order in the predicate calls, but we
omit details of the startup phase when we search for thalrhiree non-collinear points and the circular
list data structure. We offer the full working source codsdshon GAL [3], all the point data sets, and
the images from the analysis on our companion web p&ge/www.mpi-inf.mpg.de/ ~ kettner/
proj/NonRobust/ for reference.

We use our own plain convention@i+ point type. Worth mentioning are equality comparison and
lexicographic order used to find extreme points among alirpoints in the startup phase.
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struct Point { double x, y; };

The orientation test returnsl if the pointsp, g, andr make a left turn, it returns zero if they are collinear,
and it returns—1 if they form a right turn. We implement the orientation tastexplained above witp as
pivot point. Not shown here, but we make sure that all inteliate results are represented as 64 bit doubles
and not as 80 bit extended doubles as it might happen, e.gtelrplatforms.

int orientation( Point p, Point g, Point r) {
return sign((g.x-p.x) * (ry-p.y) - (q.y-p.y) * (r.x-p.x));
}

For the initial three non-collinear points we scan the inpejuence and maintain its convex hull of up to
two extreme points until we run out of input points or we finchad extreme point for the convex hull.
From there on we scan the remaining points in our ncaimvex _hull function as shown below.

The circular list used in our implementation is self expiagnin its use. We assume a Standard Template
Library (STL) compliant interface and extend it with ciratdrs, a concept similar to STL iterators that
allow the circular traversal in the list without any past-#nd position using the increment and decrement
operators. Inaddition, we assume a function that can remeoarge in the list specified by two non-identical
circulator positions.

Our mainconvex _hull  function shown below has a conventional iterator-baseetfiate like other
STL algorithms. It computes the extreme points in countetalise order of the 2d convex hull of the
points in the iterator ranggirst,last) . It uses internally the circular ligtull to store the current
extreme points and copies this list to ttesult  output iterator at the end of the function. It also returns
the modifiedresult iterator.

tenpl at e <typenane Forwardlter, t ypenane Outputlter>

Outputlter i ncr_convex_hul | ( Forwardlter first, Forwardlter last,
Outputlter result)

{

typedef std:iterator_traits<Forwardlter> Iterator_traits;
typedef typenane lIterator_traits::value_type Point;

t ypedef Circular_list<Point> Hull;
typedef typenane Hull::circulator Circulator;

Hull hull; /'l extreme points in counterclockwise (ccw) orientation
/| first the degenerate cases until we have a proper triangle
first = find_first_triangle( first, last, hull);
whil e ( first = last) {
Point p =  =*first;
/1 find visible edge in circular list of vertices of current hull
Circulator c¢_source = hull.circulator_begin();
Circulator c¢_dest = c_source;
do {
c_source = c_dest++;
i f ( orientation( *C_source, =*c_dest, p) < 0) {
/I found visible edge, find ccw tangent
Circulator c_succ = c_dest++;
whi | e ( orientation( *C_succ, =c_dest, p) <= 0)
c_succ = c_dest++;
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(@) (b) (©)

Figure 1.4: Results of a convex hull algorithm using doytoleeision floating-point arithmetic with the
coordinate axes drawn to give the reader a frame of refereértoe implementation makes gross mistakes:
In (a), the clearly extreme poim is left out. In (b), the convex hull has a large concave coamg a (non-
visible) self intersection. In (c), the convex hull has achg visible concave chain (and no self-intersection).

/1 find cw tangent

Circulator c_pred = c_source--;

whi | e ( orientation( *C_source, *c_pred, p) <= 0)
c_pred = c_source--;

/' c'source is the first point visible, ¢’ succ the last

if ( ++c_pred !'= c_succ)
hull.circular_remove( c_pred, c_succ);

hull.insert( c_succ, p);

break; // we processed all visible edges

}
} while ( c_source != hull.circulator_begin());
++first;

}
return std:copy( hull.begin(), hull.end(), result);

1.3 Thelmpact on the Convex Hull Algorithm

Let us next see the impact of approximate arithmetic on oaveohull algorithm. Figure 1.4 shows point
sets (we give the numerical coordinates of the points betowd) the respective convex hulls computed by
the floating-point implementation of our algorithm. In eamdse the input points are indicated by small
circles, the computed convex hull polygon is shown in greenl the alleged extreme points are shown as
filled red circles. The examples show that the implememati@y make gross mistakes. It may leave out
points that are clearly extreme, it may compute polygonsahaclearly non-convex, and it may even run
forever.
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We discuss in detail the output shown in Figure 1.4(b). Wesittat the points below. For improved
readability, we will write humerical data in decimals. Sutdtimal values, when read into the machine, are
internally represented by the nearest double. We have madéisgt our data can be safely converted in this
manner, i.e., conversion to binary and back to decimal isdéetity operation. However, thé++ standard
library does not provide sufficient guarantees and we offditeonally the binary data in little-endian format
on the accompanying web page.

pp = (24.00000000000005 24.000000000000053
P, = (240, 6.0 )
ps = (5485, 6.0 )
ps = (54.85000000000035761.000000000000121
ps = (24.000000000000068 24.000000000000071
pe = ( 6.0, 6.0 ).

After the insertion ofp; to ps, we have the convex hullp, p2, ps, p4). This is correct. Poinps lies
inside the convex hull of the first four points; Hidat orient(p4, p1, ps) < 0. Thusps is inserted betweep,
andp; and we obtair{ p1, p2, Ps, Pa, Ps). However, this error is not visible yet to the eye, see Fidu¥a).

The point ps sees the edgeu, ps) and (p1, p2), but does not see the edgps, p1). All of this is
correctly determined bfloat.orient. Consider now the insertion process for pgmt Depending on where
we start the search for a visible edge, we will either find tihged p4, ps) or the edgé p;, p2). In the former
case, we insenpg betweenp, and ps and obtain the polygon shown in (b). It is visibly non-conaad has
a self-intersection. In the latter case, we inggrbetweenp; and p, and obtain the polygon shown in (c).
It is visibly non-convex.

Of course, in a deterministic implementation, we will seédyame of the errors, namely (b). This is
because in our sample implementation as given in the appendihavel = (py, ps, P4, P1), and hence the
search for a visible edge starts at edgg, p3). In order to produce (c) with our implementation we replace
the pointp, by the pointp, = (24.0,10.0). Thenps sees(p,, ps) and identifies p1, p,, ps) as the chain of
visible edges and hence constructs (c).

1.4 Further Examples®

We give further examples for large effects of seemingly smrabrs. We give sequencegs, py, Pz, ... of
points such that the first three points form a counter-clas&wriangle (andloat orient correctly discovers
this) and such that the insertion of some later point leadsatgorithm astray (in the computations with
float orient). We also discuss how we arrived at the examples. All our g@kasninvolve nearly or truly
collinear points; we will see in Lectur#? that sufficiently non-collinear points do not cause any [aois.
Does this make the examples unrealistic? We believe notyldaimt sets contain nearly collinear points or
truly collinear points, which become nearly collinear byweersion to floating-point representation.

An extreme point is overlooked: Consider the set of points below. Figure 1.4(a) and 1.6(ayvdihe
computed convex hull; a point that is clearly extreme isdeft of the hull.
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Figure 1.5:(a) The hull constructed after processing poiptgo ps. Pointsp; andps lie close to each other
and are indistinguishable in the upper figure. The magnifehematic view below shows that we have a
concave corner gis. The pointps sees the edge®s, p2) and(p4, ps), but doesot see the edgéps, p1).
One of the former edges will be chosen by the algorithm as lthinof edges visible fronps. Depending
on the choice, we obtain the hulls showr(l) or (c). In (b), (pa4, ps) is found as the visible edge, and(t),
(p1, p2) is found. We refer the reader to the text for further expliomast The figures show the coordinate
axes to give the reader a frame of reference.

p. = ( 7.3000000000000194 7.3000000000000167 float.orient(py, pa, ps) >

p. = (24.000000000000068 24.000000000000071 ) float.orient(py, po, pa) >

ps = (24.00000000000005 24.000000000000053 ) float.orient(p, ps, pa) >

ps = ( 0.500000000000016210.50000000000001243 float.orient(ps, p1, pa) > 0 (??)
ps = (8 4 ps=(4 9 pr=(1527)

Pg = (2625) Po = (19,11)

What went wrong?.et us look at the first four points. They lie almost on the §ne x, andfloat_orient
gives the results shown above. Only the last evaluation awrindicated by “(?7?)”. Geometrically, these
four evaluations say thai, sees no edge of the trianglps, p2, ps). Figure 1.6(b) gives a schematic view
of this impossible situation. The points, ..., pg are then correctly identified as extreme points and are
added to the hull. However, the algorithm never recovem filoe error made when consideripg and the
result of the computation differs drastically from the emtrhull.

We next explain how we arrived at the instance above. lotuitold us that an example (if it exists at
all) would be a triangle with two almost parallel sides andhva query point near the wedge defined by
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(b)
Figure 1.6:(a) The case of an overlooked extreme point: The pgintn the lower left corner is left out

of the hull. (b) Schematic view indicating the impossible situation of anpaiutside the current hull and
seeing no edge of the hulklies to the left of all sides of the triang(g, q,r).

the two nearly parallel edges. In view of Figure 1.1 such atpwiight be mis-classified with respect to
one of the edges and hence would be unable to see any edgetoatigge. So we started with the points
used in Figure 1.1(b), i.ep1 =~ (17,17), p2 = (24,24) ~ p3, where we movea, slightly to the right so

as to guarantee that we obtain a counter-clockwise triangykethen probed the edges incidentpowith
points p4 in and near the wedge formed by these edges. Figure 1.7(&liziss the outcomes of the two
relevant orientation tests. Each red pixel correspondspra that sees no edge. The example obtained in
this way was not completely satisfactory, since some aatént tests on the initial trianglg, p2, ps) were
evaluating to zero.

We perturbed the example further, aided by visualiiogt orient(p1, p2, p3), until we found the ex-
ample shown in (b). The final example has the nice propertyath@ossiblefloat.orient tests on the first
three points are correct. So this example is independent &ay conceivable initialization an algorithm
could use to create the first valid triangle. Figure 1.7 (loyahthe outcomes of the two orientations tests for
our final example.

A point outside the current hull sees all edges of the convex hull:  Intuition told us that an example (if

it exists) would consist of a triangle with one angle closertand hence three almost parallel sides. Where
should one place the query point? We first placed it in thensiom of the three parallel sides and quite a
distance away from the triangle. This did not work. The chditat worked is to place the point near one of
the sides so that it could see two of the sides and “float-geethird. Figure 1.8 illustrates this choice. A
concrete example follows:

pr = ( 2000, 49.200000000000003 float orient(py, p2, p3) > 0
p. = ( 1000, 49.600000000000001 float orient(py, p2, pa) < 0
ps = (—2333333333333333450.93333333333333 float orient(py, p3, p4) < 0
ps = ( 16666666666666669 49.333333333333336 float orient( ps, p1, pa) < 0 (??)

The first three points form a counter-clockwise orientednigie and according tfloat orient, the al-
gorithm believes thap, can see all edges of the triangle. What will our algorithm dio@epends on the
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p1: (17.3000000000000017.300000000000001 (7.300000000000019%.3000000000000167
p2: (24.0000000000000624.000000000000071 (24.0000000000000624.000000000000071
p3: (24.000000000000024.000000000000053 (24.000000000000024.000000000000053
ps: (0.50000000000000710.5) (0.50000000000000358.5)

(@) (b)

Figure 1.7: The point$ps, p2, p3) form a counter-clockwise triangle and we are interestedéndassifi-
cation of points(X(pa) + Xu, Y(pa) + Yu,) with respect to the edge®s, p2) and (ps, p1) incident to p;.
The extensions of these edges are indistinguishable inich&gs and are drawn as a single black line. The
red points do not “float-see” either one of the edges. Thes¢harpoints we were looking for. The points
collinear with one of the edges are ocher, those collinedin both edges are yellow, those classified as
seeing one but not the other edge are blue, and those se¢ingdyes are greefa) Example starting from
points in Figure 1.1.(b) Example that achieves “invariance” with respect to pertmtaof the first three
points.

implementation details. If the algorithm first searchesafoinvisible edge, it will search forever and never
terminate. If it deletes points on-line fromit will crash or compute nonsense depending on the details of
the implementation of..

1.5 Non-Continuous Functions

Why can our convex hull algorithm produce outputs that amsgly incorrect? The reason is the use of
approximate arithmetic for computing non-continuous fiorcs.

Three points are collinear or form a left or a right turn. THiscontinuity is clearly visible in the
analytical formula for the orientation function:

Orientation(p,q,r) = sign((ax — Px)(y — By) — (ay — Py) (rx— Px))-

It is the sign of a real numbers; the sign function is a steption and hence non-continuous.
Geometric algorithms are based on the laws of geometry;; & gpint lies outside a convex polygon if
and only if it can see one of its edges. Float-see is an incoimglementation of “see” and hence points
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Do Pa

b3 p1

Figure 1.8: Schematic view of a point seeing all hull edgeke Ppointp, sees all edges of the triangle
(P1, P2, P3).

are misclassified. Of course, only nearly collinear poimesraisclassified. So why doesn’t our algorithm
compute polygons that are close to the true hull? There deasit two reasons, why we should not expect
this to be the case. First, a point far away from a convex miygnay be classified as lying inside the
polygon (see Figure 1.6(a)). Second, a misclassified poayt ereate a slightly non-convex polygon. This
small error is amplified by later insertions (see Figureld)y(

Not only our primitive is non-continuous, the higher levelognetric tasks are also tantamount to non-
continuous functions. In the convex hull problem, we asktf@ set of extreme points. This set is a
non-continuous function of the input. For example, if a pdiat lies of an edge of the convex hull moves to
the outside of the hull, the set increases in size. Fig@nerovides another example. Observe that the blue
cylinder does not contribute to the output. However, as altre$ shrinking it ever so slightly, a blue spot
will appear in the center of the front side of the result. Sitiee result of the computation is a data structure
that records the origin of each surface patch of the outhatptitput is again a non-continuous function of
the input. Figure?? was produced with the CAD-software Rhine3D. We asked theesyto compute

(((s1 N's2) Ne2) N c).

If, the task is specified as
(e nc) Nsy) N s,

the software returns an error.

1.6 Geometric Computing vs. Numerical Analysis

We contrast geometric computing and numerical analysigiothms in numerical analysis are also de-
veloped for the Real-RAM model of computation. The standamplementation of real numbers is float-
ing point arithmetic. Numerical analysts are well awareha pitfalls of floating point computatior?].
Forsythe’s paper and many numerical analysis textboolsfaeexample [2, page 9], contain instructive
examples of how popular algorithms, e.g., Gaussian elitimnacan fail when used with floating point
arithmetic. These examples have played a guiding role inl¢irelopment of robust numerical methods.
Many numerical algorithms are self-correcting, i.e., amemade at some time of the computation is
remedied at a later time. In contrast, the algorithm of caiajimnal geometry are non-self-correcting as
we have seen in our convex hull algorithms. Consider, fomgta, the Jacobi algorithm for solving a
symmetric linear systerAx=b. We write A asL + D + R, whereD is a diagonal matrix consisting of the
diagonal entries oA, L is a lower triangular matrix consisting of the below-diagbelements oA, andRis
an upper triangular matrix consisting of the above-diagjelmnents ofA. ThenR= LT, sinceA is assumed
to be symmetric.
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LEMMA 1. The Jacobi-iteration
X1 =—-D"HL+R)x+D"1b

converges for every initial valugyagainst the solution of Ax b, if A is strictly diagonally dominant, i.e.,
|aji | > Z]a;j] for alli.
jA

Proof. We argue in two steps. We first assume that the iteration cgesend show that the fixpoint of the
iteration is the solution oAx= b. In the second step, we show that the iteration converges.
Letx* be a fixpoint of the iteration, i.ext = —D~1(L +R)x* + D~ b. Then

X=-DHL+Rx +D b <= Dx'=—(L+Rx =b
< (D+L+R)X" =D
— x'=A"1h

Let G= -D YL +R) andc=D"!h. Thenx* = Gx* +c. We next estimate the distance frognto the
fixpoint x*. We have

X¢— X =GX_1+Cc— (GX +0)
= G(X-1—X")
= GK(0—X)

and hencéx, — x*|| < ||G||¥||xo — x*|| for any matrix norm. The infinity norm o is less than one. Observe
that the sum of the absolute values of the entries of-theow of G is § j; % which is less than one since
Ais assumed to be diagonally dominant. O

Assume next, that we make an error in every iteration, i.ecaraputexy,1 = GX + c+ & for some
vectoreg with |le|| < €. Then

Xk = GX—1+C+ &1
=G(G(X-2+C+e&2)+C+e1
= G2+ (G+1)c+Ga o+ lex 1

= G + G lc+ > G lg ;.
1<i<k 1<i<k

The first two terms converge against= A~'b; observe that we know already that the exact iteration
converges against. The norm of the last term is bounded by

G la il < Gl el < ——.
I 1§Z§k il < ég” I el < 3= Gl
We conclude that the total error stays bounded. Moreovgreaior made in a particular step is dampened
by |G| in any later step.

Many problems of numerical analysis are continuous funstifvom input to output. For example, the
eigenvalues of a matrix are continuous functions of theientsf the matrix. In contrast, most problems in
geometric computing are non-continuous functions.
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However, numerical analysis also treats non-continuoablpms. Linear system solving is a non-
continuous function. The systeAx = b has a solution if and only i is in the span of the columns &f
Thus solving a linear system implicitly answers a yes-nostjae, namely whethdp is in the span of the
columns ofA. This is, however, not the view of numerical analysis.

e Numerical analysis calls such problems ill-posed or attl#fasonditioned.

e We use arithmetic to make yes/no decisions, e.g., gdeson ¢ or not?

1.7 Reliable (Geometric) Computing

What can we do? Before discussing solution, we clearly steggyoal. We want reliable implementations.
We call a progranteliable if it does what it claims to do, if it comes with a guarantee.a@untees come in
different flavors.

(1) The strongest guarantee is to solve the problem forpilitsn For the example of the convex hull, this
amounts to computing the extreme vertices of the hull foseltS of input points. (2) A weaker, but still
very strong, guarantee is to solve the problem approximébelall inputs. For example, we might compute
a convex polygorP such thatP C U, (convS) and con& C U, (P), wheree is a small positive constant, say
€ =0.01 andU, denotes-neighborhood. (3) Or we might give one of the guaranteesebmut only if the
coordinates of all input points are integers bounded/hpayM = 220, (4) Or we might guarantee that the
program never crashes and always produces a polygon. Ydihél polygon is close (with an unspecified
meaning of close) to the convex hull. (5) Or we guaranteeingth

We find guarantees 4 and 5 too weak. We will teach you techsifpreachieving guarantees 1 to 3.
The techniques come in three kinds. The first approach isdorerthat the implementations of geometric
predicates always return the correct result. It is knowrhaskact geometric computation (EGC) paradigm
and has been adopted for the software libratEBA CGALand GORELIBRARY [?, 3, 10, 8]. Itimplements
a Real-RAM to the extent needed by a particular algorithm iartde approach mainly advocated in this
book. The second approach is to perturb the input so thatdh&ry-point implementation is guaranteed
to produce the correct result on the perturbed input [7, 5¢ digcuss this approach in Lectu?@. The
third approach is to change the algorithm so that it can cae tiwe floating-point implementation of its
geometric predicates and still computes something meaninghe definition of “meaningful” is crucial
and difficult. This approach is problem-specific. We disaussLecture??.

Reliability is our main concern, but efficiency is also of wishimportance. Efficiency comes in two
flavors. On the theoretical side, we aim for algorithms wity symptotic running time. On the practical
side, we aim for programs that can compete with non-relialitrnatives.

1.8 Non-Solutions

Maybe, the reader finds that the problem should have an easyexdiscuss two approaches that are
frequently suggested, but definitely do not solve the proble

The first approach is specific to the planar convex hull pmobleA frequently heard reaction to the
examples presented in this lecture is that all examplesixple fact that the first few points are nearly
collinear. If one starts with a "roundish” hull, or at leatdrss with a hull formed from the points of minimal
and maximalx- andy- coordinates, the problem will go away. We have two answetthis suggestion:
Firstly, neither way can cope with the situation that allitpoints are nearly collinear, and secondly, the
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p: (05 2) p: (0.50000000000833222)
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Figure 1.9: The effect of epsilon-tweaking: The figures stibe result of repeating the experiment of
Figure 1.1(a), but using an absolute epsilon toleranceevafie = 1010, i.e., three points are declared
collinear if float.orient returns a value less than or equal to 30in absolute value. The yellow region of
collinearity widens, but its boundary is as fractured asteefFigure (a) shows the boundary in the direction
of the positivey-axis, and Figure (b) shows the boundary in the directiomefositivex-axis. The figures
are color coded: Yellow (red, blue, resp.) pixels represeliinear (negative, positive, resp.) orientation.
The black lines correspond to the lin@sientation(p,q,r) = +¢.

example in Figure 1.5 falsifies this suggestion. Observievtkehave a "roundish” hull after the insertion of
the pointsp; to p4 and then the next two insertions lead the algorithm astrhg. éxample can be modified

to start with points of minimal and maximat coordinates first, which we suggest as a possible course
exercise.

Epsilon-tweaking is another frequently suggested and temedy, i.e., instead of comparing exactly
with zero, one compares with a small (absolute or relatoieyance value epsilon. Epsilon-tweaking simply
activates rounding to zero. In the planar hull example, wilsmake it more likely for points outside the
current hull not to see any edges because of enforced afiipeand hence the failure that a point outside
the hull will see no edge of the hull will still occur. In the aples of Section 1.1, the yellow band in
the visualizations of collinear pixels becomes wider, bsithioundary remains as fractured as it is in the
comparison with zero, see Figure 1.9.

Another objection argues that the examples are unreadistoe they contain near collinear point triples
or points very close together (actually the usual motivatmr Epsilon-tweaking). Of course, the examples
have to look like this, otherwise there would not be room farnding errors. But they are realistic; firstly,
practical experience shows it. Secondly, degeneracieh,agicollinear point triples, are on purpose in many
data sets, since they reflect the design intent of a CAD aact&in or in architecture. Representing such
collinear point triples in double precision arithmetic dadher transformations lead to rounding errors that
turn these triples into close to collinear point triples.dahirdly, increasingly larger data sets increase the
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chance to have a bad triple of points just by bad luck, andglesfiailure suffices to ruin the computation.

1.9 Historical Notes

Numerical analysts are well aware of the pitfalls of floatpmnt computation7]. Forsythe’s paper and
many numerical analysis textbooks, see for example [2, Ph@®ntain instructive examples of how popular
algorithms, e.g., Gaussian elimination, can fail when usgld floating point arithmetic. These examples
have played a guiding role in the development of robust nigalemethods.

The first implementations of geometric algorithms wereegitlestricted the input so that integer arith-
metic was sufficient or used floating point arithmetic as thplementation of real arithmetic. Many im-
plementers reported that they found it very cumbersometithge implementations to work. KM had the
following experiences. He asked a student to implement gori#thm for Voronoi diagrams of line seg-
ments; see Figur@?. The implementation worked only for a small number of exaaplMore seriously,
the first implementations of geometric algorithms in LEDAuAsbnot work on all inputs; all of them would
break for some inputs.

The literature contains a small number of documented fslulue to numerical imprecision, e.g., For-
rest's seminal paper on implementing the point-in-polydest [4], Fortune’s example for a variant of
Graham's scan?], Shewchuk’s example for divide-and-conquer Delaunangulation [11], Ramshaw’s
braided lines [10, Section 9.6.2], Schirra’s example fonvex hulls [10, Section 9.6.1], and Mehlhorn
and Naher's examples for the sweep line algorithm for liegnsent intersection and boolean operations on
polygons [10, Sections 10.7.4 and 10.8.4]. This lectureageld on an article by Kettner et al. [9].

Software and hardware reliability goes much beyond gedmedmputing. A version of the Pentium
chip contained an error in the division hardware [1]. Th@ecosted Intel millions of dollars. The Ariane
V rocket was lost because of a bug in the control software. FHEER EXAMPLES IN Chee’s write-up

1.10 Implementation Notes

1.11 Exercises

Exercise 0.2: Formulate more guarantees. &
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