
Lecture 1

A First Implementation

We come to the implementation of our convex hull algorithm. There is one choice to be made.How do
we realize real arithmetic?We make the obvious choice. We use what computers offer us: floating point
arithmetic, i.e.,

Implementation of a Real RAM = RAM + double precision floatingpoint arithmetic.

Double precision floating point arithmetic is governed by the IEEE standard 754-1985 [6,?]). Modern
processors implement this standard and programming languages provide it under names such as “double”
(C++), “XXX” (Java), TODO.. Floating point arithmetic is the workhorse for numerical computations. TODO
Double precision floating point numbers have the form

± m2e

wherem= 1.m1m2 . . .m52, mi ∈ {0,1}, is the mantissa in binary ande is the exponent satisfying−1023<

e< 1024.1 We discuss floating point arithmetic in detail in Lecture??. At this point it suffices to know
that arithmetic in a floating point system is approximate and not exact. The result of any floating point
arithmetic operation is the exact result of the operation rounded to the nearest double (with ties broken using
some fixed rule). For example, in a decimal floating point system with a mantissa of two places, we have

0.36·0.11= 0.40

since the exact result 0.396 is rounded to the approximate result 0.40.
We will see in this lecture that floating point arithmetic is apure substitute for real arithmetic and that

the floating point implementation of our algorithm can produce very strange results. We hope that, after
seeing these examples, our students look forward to the solution techniques that we present in later lectures.
The core of aC++ implementation of our algorithm is given in Section 1.2. Thefull code can be found in
the companion web page2 of article [9] on which this lecture is based.

1.1 The Geometry of Float-Orient

Our convex hull algorithms uses the orientation predicate for three points. In the last lecture we derived the
following formula for the orientation predicate. For threepoints p = (px, py), q = (qx,qy), andr = (rx, ry)

1We ignore here so calleddenormalizednumbers that play no role in our experiments and arguments.
2http://www.mpi-inf.mpg.de/departments/d1/ClassroomE xamples/

1

2 LECTURE 1. A FIRST IMPLEMENTATION

p :

(

0.5
0.5

)

q :

(

12
12

)

r :

(

24
24

)

(

0.50000000000002531
0.5000000000000171

)

(

17.300000000000001
17.300000000000001

)

(

24.00000000000005
24.0000000000000517765

)

(

0.5
0.5

)

(

8.8000000000000007
8.8000000000000007

)

(

12.1
12.1

)

(a) (b) (c)

Figure 1.1: The weird geometry of the float-orientation predicate: The figure shows the results of
float orient(px + Xux, py +Yuy,q, r) for 0 ≤ X,Y ≤ 255, whereux = uy = 2−53 is the increment between
adjacent floating-point numbers in the considered range. The result is color coded: Yellow (red, blue, resp.)
pixels represent collinear (negative, positive, resp.) orientation. The line throughq andr is shown in black.

in the plane let

Orientation(p,q, r) = sign((qx− px)(ry− py)− (qy− py)(rx− px)). (1)

We haveOrientation(p,q, r) = +1 (resp.,−1, 0) iff the polyline(p,q, r) represents a left turn (resp., right
turn, collinearity).When the orientation predicate is implemented in this way and evaluated with floating-
point arithmetic, we call it floatorient(p,q, r) to distinguish it from the ideal predicate.

What is the geometry offloat orient, i.e., which triples of points are classified as left-turns,right-turns, or
collinear? The following type of experiment addresses the question: We choose three pointsp, q, andr and
then computefloat orient(p′,q, r) for points p′ in the floating-point neighborhood ofp. More precisely, let
ux be the increment between adjacent floating-point numbers inthe range right ofpx; for example,ux = 2−53

if px = 1
2 andux = 4·2−53 if px = 2 = 4· 1

2. Analogously, we defineuy. We consider

float orient((px +Xux, py +Yuy),q, r)

for 0≤X,Y ≤ 255. We visualize the resulting 256×256 array of signs as a 256×256 grid of colored pixels:
A yellow (red, blue) pixel represents collinear (negative,positive, respectively) orientation. In the figures in
this section we also indicate an approximation of the exact line throughq andr in black.

Figure 1.1(a) shows the result of our first experiment: We usethe line defined by the pointsq= (12,12)
andr = (24,24) and query it nearp = (0.5,0.5). We urge the reader to pause for a moment and to sketch
what he/she expects to see. The authors expected to see a yellow band around the diagonal with nearly
straight boundaries. Even for points with such simple coordinates the geometry offloat orient is quite
weird: the set of yellow points (= the points classified as on the line) does not resemble a straight line and

1.1. THE GEOMETRY OF FLOAT-ORIENT 3

Figure 1.2: We repeat the example from Figure 1.1(b) and showthe result for all three distinct choices for
the pivot; namelyp on the left,q in the middle, andr on the right. All figures exhibit sign reversal.

the sets of red or blue points do not resemble half-spaces. Weeven have points that change the side of the
line, i.e., are lying left of the line and being classified as right of the line and vice versa.

In Figures 1.1(b) and (c) we have given our base points coordinates with more bits of precision by adding
some digits behind the binary point. This enhances the cancellation effects in the evaluation offloat orient
and leads to even more striking pictures. In (b), the red region looks like a step function at first sight. Note
however, it is not monotone, has yellow rays extending into it, and red lines extruding from it. The yellow
region (= collinear-region) forms blocks along the line. Strangely enough, these blocks are separated by
blue and red lines. Finally, many points change sides. In Figure (c), we have yellow blocks of varying
sizes along the diagonal, thin yellow and partly red lines extending into the blue region (similarly for the
red region), red points (the left upper corners of the yellowstructures extending into the blue region) deep
inside the blue region, and isolated yellow points almost 100 units away from the diagonal.

All diagrams in Figure 1.1 exhibit block structure. We now explain why: We focus on one dimension,
i.e., assume we keepY fixed and vary onlyX. We evaluatefloat orient((px + Xux, py +Yuy),q, r) for 0≤
X ≤ 255, whereux = uy is the increment between adjacent floating-point numbers inthe considered range.
Recall thatOrientation(p,q, r) = sign((qx− px)(ry− py)− (qy− py)(rx− px)). We incur round-off errors in
the additions/subtractions and also in the multiplications. Consider first one of the differences, sayqx− px.
In (a), we haveqx = 12 andpx ≈ 0.5. Since 12 has four binary digits, we lose the last four bits of X in the
subtraction, in other words, the result of the subtractionqx− px is constant for 24 consecutive values ofX.
Because of rounding to nearest, the intervals of constant value are[8,23], [24,39], [40,55] Similarly, the
floating-point result ofrx− px is constant for 25 consecutive values ofX. Because of rounding to nearest, the
intervals of constant value are[16,47], [48,69], Overlaying the two progressions gives intervals[16,23],
[24,39], [40,47], [48,55], . . . and this explains the structure we see in the rows of (a).We see short blocks
of length 8, 16, 24, . . . in (a). In (b) and (c), the situation issomewhat more complicated. It is again true
that we have intervals forX, where the results of the subtractions are constant. However, sinceq andr have
more complex coordinates, the relative shifts of these intervals are different and hence we see narrow and
broad features.

Exercise 0.1: Download the code from the web page of the course and perform your own experiments.♦

4 LECTURE 1. A FIRST IMPLEMENTATION

(a) (b)

Figure 1.3: Examples of the impact of extended double arithmetic. We repeat the example from Figure 1.1(b)
with different implementations of the orientation test:(a) We evaluate(qx− px)(ry− py) and(qy− py)(rx−
px) in extended double arithmetic, convert their values to double precision, and compare them.(b) We
evaluatesign((qx− px)(ry− py)− (qy− py)(rx− px)) in extended double arithmetic. For both experiments,
we usedux = uy = 2−53, the same as for the regular double precision examples in Figure 1.1. Note that there
are no collinearities (yellow points) reported in(b).

Choice of a Pivot Point: The orientation predicate is the sign of a three-by-three determinant and this
determinant may be evaluated in different ways. Infloat orient as defined above we use the pointp as the
pivot, i.e., we subtract the row representing the pointp from the other rows and reduce the problem to the
evaluation of a two-by-two determinant. Similarly, we may choose one of the other points as the pivot.
Figure 1.2 displays the effect of the different choices of the pivot point on the example of Figure 1.1(b). The
choice of the pivot makes a difference, but nonetheless the geometry remains non-trivial and sign reversals
happen for all three choices. We will see in Lecture?? that the center point w.r.t. thex-coordinate (or the
y-coordinate) is the best choice for the pivot. However, no choice of pivot can avoid all sign errors.

Extended Double Precision: Some architectures, for example, Intel Pentium processors, offer IEEE ex-
tended double precision with a 64 bit mantissa in an 80 bit representation. Does this additional precision
help? Not really, as the examples in Figure 1.3 suggest. One might argue that the number of misclassified
points decreases, but the geometry offloat orient remains fractured and exploitable for failures similar to
those that we develop below for double precision arithmetic.

1.2 Implementation of the Convex Hull Algorithm

We describe ourC++ reference implementation of our simple incremental algorithm. We give the details
necessary to reproduce our results, for example, the exact parameter order in the predicate calls, but we
omit details of the startup phase when we search for the initial three non-collinear points and the circular
list data structure. We offer the full working source code based on CGAL [3], all the point data sets, and
the images from the analysis on our companion web pagehttp://www.mpi-inf.mpg.de/ ˜ kettner/

proj/NonRobust/ for reference.
We use our own plain conventionalC++ point type. Worth mentioning are equality comparison and

lexicographic order used to find extreme points among collinear points in the startup phase.

1.2. IMPLEMENTATION OF THE CONVEX HULL ALGORITHM 5

struct Point { double x, y; };

The orientation test returns+1 if the pointsp, q, andr make a left turn, it returns zero if they are collinear,
and it returns−1 if they form a right turn. We implement the orientation testas explained above withp as
pivot point. Not shown here, but we make sure that all intermediate results are represented as 64 bit doubles
and not as 80 bit extended doubles as it might happen, e.g., onIntel platforms.

int orientation(Point p, Point q, Point r) {
return sign((q.x-p.x) * (r.y-p.y) - (q.y-p.y) * (r.x-p.x));

}

For the initial three non-collinear points we scan the inputsequence and maintain its convex hull of up to
two extreme points until we run out of input points or we find a third extreme point for the convex hull.
From there on we scan the remaining points in our mainconvex hull function as shown below.

The circular list used in our implementation is self explaining in its use. We assume a Standard Template
Library (STL) compliant interface and extend it with circulators, a concept similar to STL iterators that
allow the circular traversal in the list without any past-the-end position using the increment and decrement
operators. In addition, we assume a function that can removea range in the list specified by two non-identical
circulator positions.

Our mainconvex hull function shown below has a conventional iterator-based interface like other
STL algorithms. It computes the extreme points in counterclockwise order of the 2d convex hull of the
points in the iterator range[first,last) . It uses internally the circular listhull to store the current
extreme points and copies this list to theresult output iterator at the end of the function. It also returns
the modifiedresult iterator.

template <typename ForwardIter, typename OutputIter>
OutputIter incr_convex_hull(ForwardIter first, ForwardIter last,

OutputIter result)
{

typedef std::iterator_traits<ForwardIter> Iterator_traits;
typedef typename Iterator_traits::value_type Point;
typedef Circular_list<Point> Hull;
typedef typename Hull::circulator Circulator;

Hull hull; // extreme points in counterclockwise (ccw) orientation
// first the degenerate cases until we have a proper triangle
first = find_first_triangle(first, last, hull);
while (first != last) {

Point p = * first;
// find visible edge in circular list of vertices of current hull
Circulator c_source = hull.circulator_begin();
Circulator c_dest = c_source;
do {

c_source = c_dest++;
if (orientation(* c_source, * c_dest, p) < 0) {

// found visible edge, find ccw tangent
Circulator c_succ = c_dest++;
while (orientation(* c_succ, * c_dest, p) <= 0)

c_succ = c_dest++;

6 LECTURE 1. A FIRST IMPLEMENTATION

p2, p3

p1

p2, p3

(a) (b) (c)

Figure 1.4: Results of a convex hull algorithm using double-precision floating-point arithmetic with the
coordinate axes drawn to give the reader a frame of reference. The implementation makes gross mistakes:
In (a), the clearly extreme pointp1 is left out. In (b), the convex hull has a large concave cornerand a (non-
visible) self intersection. In (c), the convex hull has a clearly visible concave chain (and no self-intersection).

// find cw tangent
Circulator c_pred = c_source--;
while (orientation(* c_source, * c_pred, p) <= 0)

c_pred = c_source--;
// c˙source is the first point visible, c˙succ the last
if (++c_pred != c_succ)

hull.circular_remove(c_pred, c_succ);
hull.insert(c_succ, p);
break; // we processed all visible edges

}
} while (c_source != hull.circulator_begin());
++first;

}
return std::copy(hull.begin(), hull.end(), result);

}

1.3 The Impact on the Convex Hull Algorithm

Let us next see the impact of approximate arithmetic on our convex hull algorithm. Figure 1.4 shows point
sets (we give the numerical coordinates of the points below)and the respective convex hulls computed by
the floating-point implementation of our algorithm. In eachcase the input points are indicated by small
circles, the computed convex hull polygon is shown in green,and the alleged extreme points are shown as
filled red circles. The examples show that the implementation may make gross mistakes. It may leave out
points that are clearly extreme, it may compute polygons that are clearly non-convex, and it may even run
forever.

1.4. FURTHER EXAMPLES∗ 7

We discuss in detail the output shown in Figure 1.4(b). We consider the points below. For improved
readability, we will write numerical data in decimals. Suchdecimal values, when read into the machine, are
internally represented by the nearest double. We have made sure that our data can be safely converted in this
manner, i.e., conversion to binary and back to decimal is theidentity operation. However, theC++ standard
library does not provide sufficient guarantees and we offer additionally the binary data in little-endian format
on the accompanying web page.

p1 = (24.00000000000005, 24.000000000000053)
p2 = (24.0, 6.0)
p3 = (54.85, 6.0)
p4 = (54.850000000000357, 61.000000000000121)
p5 = (24.000000000000068, 24.000000000000071)
p6 = (6.0, 6.0).

After the insertion ofp1 to p4, we have the convex hull(p1, p2, p3, p4). This is correct. Pointp5 lies
inside the convex hull of the first four points; butfloat orient(p4, p1, p5) < 0. Thusp5 is inserted betweenp4

andp1 and we obtain(p1, p2, p3, p4, p5). However, this error is not visible yet to the eye, see Figure1.5(a).

The point p6 sees the edges(p4, p5) and (p1, p2), but does not see the edge(p5, p1). All of this is
correctly determined byfloat orient. Consider now the insertion process for pointp6. Depending on where
we start the search for a visible edge, we will either find the edge(p4, p5) or the edge(p1, p2). In the former
case, we insertp6 betweenp4 andp5 and obtain the polygon shown in (b). It is visibly non-convexand has
a self-intersection. In the latter case, we insertp6 betweenp1 and p2 and obtain the polygon shown in (c).
It is visibly non-convex.

Of course, in a deterministic implementation, we will see only one of the errors, namely (b). This is
because in our sample implementation as given in the appendix, we haveL = (p2, p3, p4, p1), and hence the
search for a visible edge starts at edge(p2, p3). In order to produce (c) with our implementation we replace
the pointp2 by the pointp′2 = (24.0,10.0). Thenp6 sees(p′2, p3) and identifies(p1, p′2, p3) as the chain of
visible edges and hence constructs (c).

1.4 Further Examples∗

We give further examples for large effects of seemingly small errors. We give sequencesp1, p2, p3, . . . of
points such that the first three points form a counter-clockwise triangle (andfloat orient correctly discovers
this) and such that the insertion of some later point leads the algorithm astray (in the computations with
float orient). We also discuss how we arrived at the examples. All our examples involve nearly or truly
collinear points; we will see in Lecture?? that sufficiently non-collinear points do not cause any problems.
Does this make the examples unrealistic? We believe not. Many point sets contain nearly collinear points or
truly collinear points, which become nearly collinear by conversion to floating-point representation.

An extreme point is overlooked: Consider the set of points below. Figure 1.4(a) and 1.6(a) show the
computed convex hull; a point that is clearly extreme is leftout of the hull.

8 LECTURE 1. A FIRST IMPLEMENTATION

p2 p3

p4

p2 p3

p4

p6

p′2
p3

p4

p6

p1 p5 p1 p5 p1 p5

(a) (b) (c)

Figure 1.5:(a) The hull constructed after processing pointsp1 to p5. Pointsp1 andp5 lie close to each other
and are indistinguishable in the upper figure. The magnified schematic view below shows that we have a
concave corner atp5. The pointp6 sees the edges(p1, p2) and(p4, p5), but doesnot see the edge(p5, p1).
One of the former edges will be chosen by the algorithm as the chain of edges visible fromp6. Depending
on the choice, we obtain the hulls shown in(b) or (c). In (b), (p4, p5) is found as the visible edge, and in(c),
(p1, p2) is found. We refer the reader to the text for further explanations. The figures show the coordinate
axes to give the reader a frame of reference.

p1 = (7.3000000000000194, 7.3000000000000167)
p2 = (24.000000000000068, 24.000000000000071)
p3 = (24.00000000000005, 24.000000000000053)
p4 = (0.50000000000001621, 0.50000000000001243)
p5 = (8, 4) p6 = (4, 9) p7 = (15,27)
p8 = (26,25) p9 = (19,11)

float orient(p1, p2, p3) > 0
float orient(p1, p2, p4) > 0
float orient(p2, p3, p4) > 0
float orient(p3, p1, p4) > 0 (??)

What went wrong?Let us look at the first four points. They lie almost on the liney = x, andfloat orient
gives the results shown above. Only the last evaluation is wrong, indicated by “(??)”. Geometrically, these
four evaluations say thatp4 sees no edge of the triangle(p1, p2, p3). Figure 1.6(b) gives a schematic view
of this impossible situation. The pointsp5, . . . , p9 are then correctly identified as extreme points and are
added to the hull. However, the algorithm never recovers from the error made when consideringp4 and the
result of the computation differs drastically from the correct hull.

We next explain how we arrived at the instance above. Intuition told us that an example (if it exists at
all) would be a triangle with two almost parallel sides and with a query point near the wedge defined by

1.4. FURTHER EXAMPLES∗ 9

p1

p2, p3

p4

p5

p6

p7
p8

p9

����

����

����

����

p

q
r

x

(a) (b)

Figure 1.6:(a) The case of an overlooked extreme point: The pointp4 in the lower left corner is left out
of the hull. (b) Schematic view indicating the impossible situation of a point outside the current hull and
seeing no edge of the hull:x lies to the left of all sides of the triangle(p,q, r).

the two nearly parallel edges. In view of Figure 1.1 such a point might be mis-classified with respect to
one of the edges and hence would be unable to see any edge of thetriangle. So we started with the points
used in Figure 1.1(b), i.e.,p1 ≈ (17,17), p2 ≈ (24,24) ≈ p3, where we movedp2 slightly to the right so
as to guarantee that we obtain a counter-clockwise triangle. We then probed the edges incident top1 with
points p4 in and near the wedge formed by these edges. Figure 1.7(a) visualizes the outcomes of the two
relevant orientation tests. Each red pixel corresponds to apoint that sees no edge. The example obtained in
this way was not completely satisfactory, since some orientation tests on the initial triangle(p1, p2, p3) were
evaluating to zero.

We perturbed the example further, aided by visualizingfloat orient(p1, p2, p3), until we found the ex-
ample shown in (b). The final example has the nice property that all possiblefloat orient tests on the first
three points are correct. So this example is independent from any conceivable initialization an algorithm
could use to create the first valid triangle. Figure 1.7(b) shows the outcomes of the two orientations tests for
our final example.

A point outside the current hull sees all edges of the convex hull: Intuition told us that an example (if
it exists) would consist of a triangle with one angle close toπ and hence three almost parallel sides. Where
should one place the query point? We first placed it in the extension of the three parallel sides and quite a
distance away from the triangle. This did not work. The choice that worked is to place the point near one of
the sides so that it could see two of the sides and “float-see” the third. Figure 1.8 illustrates this choice. A
concrete example follows:

p1 = (200.0, 49.200000000000003)
p2 = (100.0, 49.600000000000001)
p3 = (−233.33333333333334, 50.93333333333333)
p4 = (166.66666666666669, 49.333333333333336)

float orient(p1, p2, p3) > 0
float orient(p1, p2, p4) < 0
float orient(p2, p3, p4) < 0
float orient(p3, p1, p4) < 0 (??)

The first three points form a counter-clockwise oriented triangle and according tofloat orient, the al-
gorithm believes thatp4 can see all edges of the triangle. What will our algorithm do?It depends on the

10 LECTURE 1. A FIRST IMPLEMENTATION

p1 : (17.300000000000001,17.300000000000001)
p2 : (24.000000000000068,24.000000000000071)
p3 : (24.00000000000005,24.000000000000053)
p4 : (0.50000000000000711,0.5)

(7.3000000000000194,7.3000000000000167)
(24.000000000000068,24.000000000000071)
(24.00000000000005,24.000000000000053)

(0.50000000000000355,0.5)

(a) (b)

Figure 1.7: The points(p1, p2, p3) form a counter-clockwise triangle and we are interested in the classifi-
cation of points(x(p4)+ Xux,y(p4)+Yuy) with respect to the edges(p1, p2) and(p3, p1) incident top1.
The extensions of these edges are indistinguishable in the pictures and are drawn as a single black line. The
red points do not “float-see” either one of the edges. These are the points we were looking for. The points
collinear with one of the edges are ocher, those collinear with both edges are yellow, those classified as
seeing one but not the other edge are blue, and those seeing both edges are green.(a) Example starting from
points in Figure 1.1.(b) Example that achieves “invariance” with respect to permutation of the first three
points.

implementation details. If the algorithm first searches foran invisible edge, it will search forever and never
terminate. If it deletes points on-line fromL it will crash or compute nonsense depending on the details of
the implementation ofL.

1.5 Non-Continuous Functions

Why can our convex hull algorithm produce outputs that are grossly incorrect? The reason is the use of
approximate arithmetic for computing non-continuous functions.

Three points are collinear or form a left or a right turn. Thisdiscontinuity is clearly visible in the
analytical formula for the orientation function:

Orientation(p,q, r) = sign((qx− px)(ry− py)− (qy− py)(rx− px)).

It is the sign of a real numbers; the sign function is a step function and hence non-continuous.
Geometric algorithms are based on the laws of geometry; e.g., a point lies outside a convex polygon if

and only if it can see one of its edges. Float-see is an incorrect implementation of “see” and hence points

1.6. GEOMETRIC COMPUTING VS. NUMERICAL ANALYSIS 11

p2

p4

p1
p3

Figure 1.8: Schematic view of a point seeing all hull edges: The point p4 sees all edges of the triangle
(p1, p2, p3).

are misclassified. Of course, only nearly collinear points are misclassified. So why doesn’t our algorithm
compute polygons that are close to the true hull? There are atleast two reasons, why we should not expect
this to be the case. First, a point far away from a convex polygon may be classified as lying inside the
polygon (see Figure 1.6(a)). Second, a misclassified point may create a slightly non-convex polygon. This
small error is amplified by later insertions (see Figure 1.4(b)).

Not only our primitive is non-continuous, the higher level geometric tasks are also tantamount to non-
continuous functions. In the convex hull problem, we ask forthe set of extreme points. This set is a
non-continuous function of the input. For example, if a point that lies of an edge of the convex hull moves to
the outside of the hull, the set increases in size. Figure?? provides another example. Observe that the blue
cylinder does not contribute to the output. However, as a result of shrinking it ever so slightly, a blue spot
will appear in the center of the front side of the result. Since the result of the computation is a data structure
that records the origin of each surface patch of the output, the output is again a non-continuous function of
the input. Figure?? was produced with the CAD-software Rhine3D. We asked the system to compute

(((s1 ∩ s2) ∩ c2) ∩ c1).

If, the task is specified as

(((c1 ∩ c2) ∩ s1) ∩ s2,

the software returns an error.

1.6 Geometric Computing vs. Numerical Analysis

We contrast geometric computing and numerical analysis. Algorithms in numerical analysis are also de-
veloped for the Real-RAM model of computation. The standardimplementation of real numbers is float-
ing point arithmetic. Numerical analysts are well aware of the pitfalls of floating point computation [?].
Forsythe’s paper and many numerical analysis textbooks, see for example [2, page 9], contain instructive
examples of how popular algorithms, e.g., Gaussian elimination, can fail when used with floating point
arithmetic. These examples have played a guiding role in thedevelopment of robust numerical methods.

Many numerical algorithms are self-correcting, i.e., an error made at some time of the computation is
remedied at a later time. In contrast, the algorithm of computational geometry are non-self-correcting as
we have seen in our convex hull algorithms. Consider, for example, the Jacobi algorithm for solving a
symmetric linear systemAx= b. We writeA asL + D + R, whereD is a diagonal matrix consisting of the
diagonal entries ofA, L is a lower triangular matrix consisting of the below-diagonal elements ofA, andR is
an upper triangular matrix consisting of the above-diagonal elements ofA. ThenR= LT , sinceA is assumed
to be symmetric.

12 LECTURE 1. A FIRST IMPLEMENTATION

LEMMA 1. The Jacobi-iteration
xk+1 = −D−1(L+R)xk +D−1b

converges for every initial value x0 against the solution of Ax= b, if A is strictly diagonally dominant, i.e.,

|aii | > ∑
j 6=i

|ai j | for all i .

Proof. We argue in two steps. We first assume that the iteration converges and show that the fixpoint of the
iteration is the solution ofAx= b. In the second step, we show that the iteration converges.

Let x∗ be a fixpoint of the iteration, i.e.,x∗ = −D−1(L+R)x∗+D−1b. Then

x∗ = −D−1(L+R)x∗+D−1b ⇐⇒ Dx∗ = −(L+R)x∗ = b

⇐⇒ (D+L+R)x∗ = b

⇐⇒ x∗ = A−1b.

Let G = −D−1(L + R) andc = D−1b. Thenx∗ = Gx∗ + c. We next estimate the distance fromxk to the
fixpoint x∗. We have

xk−x∗ = Gxk−1 +c− (Gx∗+c)

= G(xk−1−x∗)

= Gk(x0−x∗)

and hence||xk−x∗|| ≤ ||G||k||x0−x∗|| for any matrix norm. The infinity norm ofG is less than one. Observe

that the sum of the absolute values of the entries of thei-th row ofG is ∑ j 6=i
|ai j |
|aii |

which is less than one since
A is assumed to be diagonally dominant.

Assume next, that we make an error in every iteration, i.e, wecomputexk+1 = Gxk + c+ ek for some
vectorek with ||ek|| ≤ ε . Then

xk = Gxk−1 +c+ek−1

= G(G(xk−2 +c+ek−2)+c+ek−1

= G2xk−2 +(G+ I)c+Gek−2+ Iek−1

= . . .

= Gkx0 + ∑
1≤i≤k

Gi−1c+ ∑
1≤i≤k

Gi−1ek−i .

The first two terms converge againstx∗ = A−1b; observe that we know already that the exact iteration
converges againstx∗. The norm of the last term is bounded by

|| ∑
1≤i≤k

Gi−1ek−i || ≤ ∑
1≤i≤k

||G||i−1||ek−i || ≤
ε

1−||G||
.

We conclude that the total error stays bounded. Moreover, any error made in a particular step is dampened
by ||G|| in any later step.

Many problems of numerical analysis are continuous functions from input to output. For example, the
eigenvalues of a matrix are continuous functions of the entries of the matrix. In contrast, most problems in
geometric computing are non-continuous functions.

1.7. RELIABLE (GEOMETRIC) COMPUTING 13

However, numerical analysis also treats non-continuous problems. Linear system solving is a non-
continuous function. The systemAx= b has a solution if and only ifb is in the span of the columns ofA.
Thus solving a linear system implicitly answers a yes-no question, namely whetherb is in the span of the
columns ofA. This is, however, not the view of numerical analysis.

• Numerical analysis calls such problems ill-posed or at least ill-conditioned.

• We use arithmetic to make yes/no decisions, e.g., doesp lie on ℓ or not?

1.7 Reliable (Geometric) Computing

What can we do? Before discussing solution, we clearly statethe goal. We want reliable implementations.
We call a programreliable if it does what it claims to do, if it comes with a guarantee. Guarantees come in
different flavors.

(1) The strongest guarantee is to solve the problem for all inputs. For the example of the convex hull, this
amounts to computing the extreme vertices of the hull for allsetsSof input points. (2) A weaker, but still
very strong, guarantee is to solve the problem approximately for all inputs. For example, we might compute
a convex polygonP such thatP⊆Uε(convS) and convS⊆Uε(P), whereε is a small positive constant, say
ε = 0.01 andUε denotesε-neighborhood. (3) Or we might give one of the guarantees above, but only if the
coordinates of all input points are integers bounded byM, sayM = 220. (4) Or we might guarantee that the
program never crashes and always produces a polygon. Usually, this polygon is close (with an unspecified
meaning of close) to the convex hull. (5) Or we guarantee nothing.

We find guarantees 4 and 5 too weak. We will teach you techniques for achieving guarantees 1 to 3.
The techniques come in three kinds. The first approach is to ensure that the implementations of geometric
predicates always return the correct result. It is known as the exact geometric computation (EGC) paradigm
and has been adopted for the software librariesLEDA, CGALand COREL IBRARY [?, 3, 10, 8]. It implements
a Real-RAM to the extent needed by a particular algorithm andis the approach mainly advocated in this
book. The second approach is to perturb the input so that the floating-point implementation is guaranteed
to produce the correct result on the perturbed input [7, 5]. We discuss this approach in Lecture??. The
third approach is to change the algorithm so that it can cope with the floating-point implementation of its
geometric predicates and still computes something meaningful. The definition of “meaningful” is crucial
and difficult. This approach is problem-specific. We discussit in Lecture??.

Reliability is our main concern, but efficiency is also of utmost importance. Efficiency comes in two
flavors. On the theoretical side, we aim for algorithms with low asymptotic running time. On the practical
side, we aim for programs that can compete with non-reliablealternatives.

1.8 Non-Solutions

Maybe, the reader finds that the problem should have an easy fix. We discuss two approaches that are
frequently suggested, but definitely do not solve the problem.

The first approach is specific to the planar convex hull problem. A frequently heard reaction to the
examples presented in this lecture is that all examples exploit the fact that the first few points are nearly
collinear. If one starts with a ”roundish” hull, or at least starts with a hull formed from the points of minimal
and maximalx- andy- coordinates, the problem will go away. We have two answers to this suggestion:
Firstly, neither way can cope with the situation that all input points are nearly collinear, and secondly, the

14 LECTURE 1. A FIRST IMPLEMENTATION

p :

(

0.5
0.50000000000833222

)

q :

(

12
12

)

r :

(

24
24

)

p :

(

0.50000000000833222
0.5

)

q :

(

12
12

)

r :

(

24
24

)

(a) (b)

Figure 1.9: The effect of epsilon-tweaking: The figures showthe result of repeating the experiment of
Figure 1.1(a), but using an absolute epsilon tolerance value of ε = 10−10, i.e., three points are declared
collinear if float orient returns a value less than or equal to 10−10 in absolute value. The yellow region of
collinearity widens, but its boundary is as fractured as before. Figure (a) shows the boundary in the direction
of the positivey-axis, and Figure (b) shows the boundary in the direction of the positivex-axis. The figures
are color coded: Yellow (red, blue, resp.) pixels representcollinear (negative, positive, resp.) orientation.
The black lines correspond to the linesOrientation(p,q, r) = ±ε .

example in Figure 1.5 falsifies this suggestion. Observe that we have a ”roundish” hull after the insertion of
the pointsp1 to p4 and then the next two insertions lead the algorithm astray. The example can be modified
to start with points of minimal and maximalx- coordinates first, which we suggest as a possible course
exercise.

Epsilon-tweaking is another frequently suggested and usedremedy, i.e., instead of comparing exactly
with zero, one compares with a small (absolute or relative) tolerance value epsilon. Epsilon-tweaking simply
activates rounding to zero. In the planar hull example, thiswill make it more likely for points outside the
current hull not to see any edges because of enforced collinearity and hence the failure that a point outside
the hull will see no edge of the hull will still occur. In the examples of Section 1.1, the yellow band in
the visualizations of collinear pixels becomes wider, but its boundary remains as fractured as it is in the
comparison with zero, see Figure 1.9.

Another objection argues that the examples are unrealisticsince they contain near collinear point triples
or points very close together (actually the usual motivation for Epsilon-tweaking). Of course, the examples
have to look like this, otherwise there would not be room for rounding errors. But they are realistic; firstly,
practical experience shows it. Secondly, degeneracies, such as collinear point triples, are on purpose in many
data sets, since they reflect the design intent of a CAD construction or in architecture. Representing such
collinear point triples in double precision arithmetic andfurther transformations lead to rounding errors that
turn these triples into close to collinear point triples. And thirdly, increasingly larger data sets increase the

1.9. HISTORICAL NOTES 15

chance to have a bad triple of points just by bad luck, and a single failure suffices to ruin the computation.

1.9 Historical Notes

Numerical analysts are well aware of the pitfalls of floatingpoint computation [?]. Forsythe’s paper and
many numerical analysis textbooks, see for example [2, page9], contain instructive examples of how popular
algorithms, e.g., Gaussian elimination, can fail when usedwith floating point arithmetic. These examples
have played a guiding role in the development of robust numerical methods.

The first implementations of geometric algorithms were either restricted the input so that integer arith-
metic was sufficient or used floating point arithmetic as the implementation of real arithmetic. Many im-
plementers reported that they found it very cumbersome to get their implementations to work. KM had the
following experiences. He asked a student to implement an algorithm for Voronoi diagrams of line seg-
ments; see Figure??. The implementation worked only for a small number of examples. More seriously,
the first implementations of geometric algorithms in LEDA would not work on all inputs; all of them would
break for some inputs.

The literature contains a small number of documented failures due to numerical imprecision, e.g., For-
rest’s seminal paper on implementing the point-in-polygontest [4], Fortune’s example for a variant of
Graham’s scan [?], Shewchuk’s example for divide-and-conquer Delaunay triangulation [11], Ramshaw’s
braided lines [10, Section 9.6.2], Schirra’s example for convex hulls [10, Section 9.6.1], and Mehlhorn
and Näher’s examples for the sweep line algorithm for line segment intersection and boolean operations on
polygons [10, Sections 10.7.4 and 10.8.4]. This lecture is based on an article by Kettner et al. [9].

Software and hardware reliability goes much beyond geometric computing. A version of the Pentium
chip contained an error in the division hardware [1]. The error costed Intel millions of dollars. The Ariane
V rocket was lost because of a bug in the control software. FURTHER EXAMPLES IN Chee’s write-up

1.10 Implementation Notes

1.11 Exercises

Exercise 0.2: Formulate more guarantees. ♦

16 LECTURE 1. A FIRST IMPLEMENTATION

Bibliography

[1] M. Blum and H. Wasserman. Reflections on the pentium division bug. IEEE Transaction on Comput-
ing, 45(4):385–393, 1996.

[2] P. Deuflhard and A. Hohmann.Numerische Mathematik: Eine algorithmisch orientierte Einführung.
Walter de Gruyter, 1991.

[3] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL a compu-
tational geometry algorithms library.Softw. – Pract. Exp., 30(11):1167–1202, 2000.

[4] A. R. Forrest. Computational geometry in practice. In R.A. Earnshaw, editor,Fundamental Algorithms
for Computer Graphics, volume F17 ofNATO ASI, pages 707–724. Springer-Verlag, 1985.

[5] S. Funke, C. Klein, K. Mehlhorn, and S. Schmitt. Controlled Perturbation for Delaunay Triangulations.
SODA, pages 1047–1056, 2005.

[6] D. Goldberg. What every computer scientist should know about floating-point arithmetic.ACM Com-
puting Surveys, 23(1):5–48, 1990.

[7] Halperin and Shelton. A perturbation scheme for spherical arrangements with application to molecular
modeling.CGTA: Computational Geometry: Theory and Applications, 10, 1998.

[8] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for robust numerical and geometric
computation. In15th ACM Symp. Computational Geometry, pages 351–359, 1999.

[9] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom Examples of Robustness Problems
in Geometric Computations. InESA, volume 3221 ofLNCS, pages 702–713, 2004. full paper to appear
in CGTA.

[10] K. Mehlhorn and S. Näher.The LEDA Platform for Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[11] J. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.Dis-
crete & Computational Geometry, 18:305–363, 1997.

17

