Lecture 1 Page 1

= i)
polygon1  [‘originalcomplemert polygon1  [Toriginalcomplement polygon1  [originalcomplemert
polygon2 | original complemerit polygon2 [ original complemenit polygon2 igi dl
operation i iof_union _|difference|_symdiff [ null operation i fior_union _[difference]_symdiff |__null | operation intersectiof _union _[differencel symdiff | __null
move | _quit move | _quit move | _quit

Intersection (10/ 0)

£

Symmetric Difference (217 1)

/4 @@@@

Figure 1: The left part shows two polygonal regions with Bdlim light and dark grey). The middle part
shows the intersection of these regions and the right parshhe symmetric difference. The figure was
produced with the LEDA demo polygodogo [4, 3].

powered by LEDA powered by LEDA

Lecture 1
Introduction

1 Geometric Computing

Geometric computing refers to computation with geometbiects such as points, lines, hyperplanes, disks,
curves, surfaces, and solids.. These objects live in aneathbpace. In this book, ambient space will be add
mainly two- and three-dimensional Euclidean space. Gewrmsimputing is ubiquitous. We illustrate its
richness by way of examples.

Computer-aided Design: Computer-aided design is about the construction of gedgormijects. Starting
from a ground set of geometric objects, e.g., half-planigsles, ellipsoids in the plane or cubes, spheres,
cylinders, tori, one constructs complex shapes by applgemmetric operations to previously constructed
objects. Figures 1 and 2 show examples in two and three diorengespectively. Figured? shows a more
complex example.

Robotics: A central task of robotics is the planning of collissiondngaths. Consider a simple situation;
the goal is to move a disk-like robot amongst polygonal atietain the plane, see FiguP®. The Voronoi
diagram of the obstacles is an appropriate data structurénéotask. It consists of all points of maximal
clearance from the obstacles; a disk grown at a point of thend diagram hits two or more obstacles
simultaneously. The diagram represents paths for maxiaietys In order to move a disk from a poiAtto

a pointB, we first move it fromA to a point on the Voronoi diagram, then along the Voronoi diag and
finally from the Voronoi diagram t@.

Graphics: A 3D scanner is a device that analyzes a real-world objeabwir@nment to collect data on its
shape and possibly its appearance (i.e. color). In its gisabrm it returns a set of points on the surface

©Mehlhorn/Yap September 30, 2009



Lecture 1 Page 2

C1
S1
S C, .

Figure 2: The left part shows four solids: two cylinders amt spheres. The right part shows their in-

tersection. The surface of the intersection composed @sfésurface patches stemming from one of the
solids), vertices (intersection curves between two inplitds) and vertices (points in common to three or
more input solids). The picture was produced with the CABvgare Rhino3D.

of the object, see Figure 4. The geometric computing tasken to construct a digital three dimensional
model of the object from the collected data. The task arise¢le production of movies and video games.
Other common applications of this technology include indalsdesign, orthotics and prosthetics, reverse
engineering and prototyping, quality control/inspectin documentation of cultural artifacts.

Linear Programming: Linear programming is concerned with the optimization (imazation or mini-
mization) of a linear function subject to linear constraint

maximize c¢'x subjectto Ax<h,

wherex is a vector ofn variables,c € R" defines the objective functio®y € R™" is am x n real matrix
andb € R™Mis a real vector. Each roa of A and the corresponding enthy of b defines a linear inequality
aix < b. Geometrically, the set of satisfying this inequality form a halfspacel®. The set ok satisfying
all constraintsAx < b is the intersection of halfspaces, i.e., a convex polyhe@®m R". Figure 5 shows
an example. The aim of linear programming is to find a pziatP that maximizes”x. The maximum is
attained at a vertex d? that is maximal in directiort.

Mathematics: Algebraic curves and algebraic surfaces are an important to mathematics. An alge-
braic curve is the zero set of a polynomjz#k, y) in two variables and an algebraic surface is the zero set of
a polynomialp(x,y, z) in three variables. In applications of algebraic curves suriaces, it is important to
visualize them. Figure 6 shows some examples.

More Examples: continue definition with pictures, give examples, examplesuld come form computa-
tional geometry, but also from fields outside CS, e.g.,

e medicine: reconstruction of artery system in brain from Niiiges

e searching for patterns in astronomy

©Mehlhorn/Yap September 30, 2009



Lecture 1 Page 3

Figure 3: Robot motion planning: The figure shows four pohgdthe letters M, P, I, and 1) enclosed in
a square frame. The space between the polygons and the spaimthe polygon in partitioned into cells
by the Voronoi diagram of the polygons. Imagine to grow a disitered in an arbitrary point of the plane.
In general, the first collission of the growing disk with orfetlee polygons will be with a single polygon.
The Voronoi diagram consists of all points, where this fitission involves two or more polygons. The
Voronoi diagram (also called Medial axes) comprises thatsaf maximum clearance from the disks. The

figure was created by Michael Seel [5].

e have alook at Danny Halperin's page: he has nice exampléspigtures. Also he taught a course on
applied computational geometry.

e GIS: map overlay, map simplification, map labelling,

e examples from the book of Overmars

2 Preview of the Course

Now that we have developed an intuition for geometric corations, we are ready for an overview of the
course.

Lecture Il:  We will start with a simple geometric problem, the computatdf the convex hull of a fi-
nite set of points in the plane. We will see several algorghor solving the problem based on different
computational paradighm: incremental computation, swaeg divide-and-conquer. We will formulate the
algorithms in terms of geometric predicates. The primiteguired for the convex hull problem is the ori-
entation predicate for three points. Given three pomi andr in the plane, the predicate tells whether the
points form a left turn, are collinear, or form a right turegsFigure 7 for an illustration. The trip(@,q,r)

is a left turn if p £ g andr lies to the left of the line passing throughandq and oriented fronp to g.

©Mehlhorn/Yap September 30, 2009



Lecture 1 Page 4

Figure 4: The left part of the picture shows a point cloud wietd from a 3D-scan of a bust of Max Planck.
The middle part and right part show reconstructions of thigah(non-smoothed and smoothed). The
reconstruction is by Tamal Dey, University of Ohio.

Lecture lll:  Points are usually represented by their Euclidean coaena/\e derive an analytical for-
mula that expresses the orientation of three points in tefrtigeir coordinates. We will see that

1 pc py
Orientation(p,q,r) =signdet| 1 ax ay |),
1 e 1y

wherep, and py are thex- andy-coordinate ofp, respectively. The sign is1 if (p,q,r) form a left turn, is
0 if they are collinear, and is 1 if they form a right turn.

Point coordinates are real numbers as are the parameteningedither geometric objects, e.g., the
coordinates of the center and the radius of a disk. Theréfieraatural model of computation for geometric
computing is theReal-RAM. It is a random access machine with the additional capgldfihandling real
numbers. Of course, the operations on real numbers follevatlis of mathematics. The Real-RAM model
is also used successfully in numerical analysis.

Real computers do not come with real arithmetic. They pmwdly floating point arithmetic and
bounded integer arithmetic. We will study the effect of fiogtpoint arithmetic on geometry. We will first
see the effect on the orientation predicate (see Fig@yand then the effect on our convex hull algorithm
(see Figure??). The former effect will be surprising, the latter effecsaltrous.

©Mehlhorn/Yap September 30, 2009



Lecture 1

Page 5

BEE]
input cube ||quuard paralmeshlspherd line |
points [ @ 1000|2000|4000|8000/800d3200d
+ 52
setup  [filter trace|checkl[elim [solid [edges
gen | file | run | stepl join |setup| exit

left: zoom up

right: start rotation

middle: zoom down

powered by LEDA

Figure 5: A convex polyhedron in three dimensional spaceialt generated as the convex hull of a set of
points (using the LEDA demo 3d-hull [4, 3]). Alternatively,could be constructed as the intersection of
the halfspaces corresponding to the faces of the polyhediioear programming finds the extreme vertex
in the direction of the objective function.

3 A First Algorithm: Convex Hulls in the Plane

4 Reliable Geometric Computing

mention LEDA and CGAL
examples of non-robustness:

e Chee’s write-up

e my examples from Certifying Algorithms paper We give somaragles of failures in algorithmic

software.

— Intersection of Solids:

Rhino3d (a CAD systems) fails to compute correct interseabif two cylinders and two spheres

— Linear Programming Solvers: CPLEX (a linear programminlgex) fails on benchmark prob-
lem etamacro. Review [2].

— Mathematica 4.2 (a mathematics systems) fails to solve & siteger linear program

©Mehlhorn/Yap

September 30, 2009



Lecture 1 Page 6

Figure 6: A figure of an algebraic curve (from Pavel’s gallerglose-up view of a singularity, a figure of a
triangulated surface. Show the equations, either in thieotex the caption.

r

r
q q
q

@ "o O

Figure 7: (a) shows a left turn, (b) shows collinear pointgl ) shows a right turn.

In[1] := ConstrainedM n[ x , {x==1,x==2}, {x} ]
Qut[1] = {2, {x->2}}
In[1] := Constrai nedMax[ x , {x==1,x==2}, {x} ]
Constrai nedMax: : "l psub": "The problemis unbounded."
Qut[2] = {Infinity, {x -> Indeterm nate}}

— pointin line

also discuss here that we want to compute non-continuousidms.

Pentium Bug: A version of the Pentium chip contained an error in the dividnardware [1].

This book is about efficient reliable geometric computation

A general discussion of reliability, examples of non-rfeleacomputation, this is not restricted to geo-
metric computation.

examples of geometric computation by pictures. Define tiragén the title:

e geometric computation = computation with geometric olgjedefine in words and in pictures. Give
examples of geometric computing. Should come from a vaétyources, also outside CS, e.g.,
graphics, medicine, astronomy,

e reliable = program does what it claims to do, program comél wiguarantee. programming with
contracts
Examples are:

— program computes a relatiap(x,y), i.e., for every inpuk it delivers ay with @/(x,y)
— program computes an approximate solution in a precise sense

— program computes an approximate solution in an intuitivesse

— program never crashes

e efficient comes in two flavors:

©Mehlhorn/Yap September 30, 2009



Lecture 1 Page 7

— theoretical efficiency: low asymptotic running time
— practical efficiency: program is useful, can compete witarahtives,

References

[1] M. Blum and H. Wasserman. Reflections on the pentium digisug.| EEE Transaction on Computing,
45(4):385-393, 1996.

[2] M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel, Bchomer, R. Schulte, and D. Weber.
Certifying and Repairing Solutions to Large LPs, How Gooel laP-solvers?. [I'BODA, pages 255—
256, 2003.

[3] LEDA (Library of Efficient Data Types and Algorithmsywwv. al gori t hm c- sol uti ons. com

[4] K. Mehlhorn and S. NaherThe LEDA Platform for Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[5] M. Seel. Eine Implementierung abstrakter Voronoidé@agme. Master’s thesis, Fachbereich Informatik,
Universitat des Saarlandes, Saarbriicken, 1994.

©Mehlhorn/Yap September 30, 2009



