Lecture 9

Root Isolation

The determination of the roots of a univariate real polyradrig ubiquitous in geometric computing. L&t
be such a polynomial and latbe its degree, i.e.,

f= fix € R[X.

0<i<n

A polynomial of degree has exactlyn complex root$if roots are counted with multiplicities. We can write
f as a product of linear factors, i.e.,
F) = fn [ (x— &),
|
where theé’s are the distinct roots of andk; is the multiplicity of §;. Thenyiki=n. Arooté € R is
called a real root. The nonreal roots come in pairs of cot@igaots. More precisely, & = a+ bi with
b > 0 is a root off, then the complex conjugafe= a— bi of £ is also a root off. Indeedf (&) = 0 implies

0-0-T)= 5 &=y T&=y Ta- 3y fe'= 5 7.

0<i<n 0<i<n 0<i<n 0<i<n 0<i<n

where the last equality holds since the coefficiefptare real numbers. Thusis a root of f. We ask the
reader to show thaf and& have the same multiplicity.

Exercise 0.1: Let ¢ be a nonreal root of. Show thaté and & have the same multiplicity as roots 6f
Hint: Let& = a+ib. Theng(x) = (x— &)(x— &) = x> — 2ax-+a® + b? is a real polynomial that divides
f. Thusf/gis also a real polynomial. Now apply induction. &

How can we determine the roots of a polynomial? For polyntsroadegree one, the task is trivial.
x—5= 0 has a single root, namek= 5.
For polynomials of degree two, we learned the solution ifnlsighool.
X2 + bx+c = 0 has two roots, namely= (—b++/b? —4c)/2.
The polynomial has two distinct real rootsbf — 4c > 0, it has a double real root ¥ — 4c = 0, and its
has two complex roots % — 4c < 0. Explicit solutions are also known for polynomials of degthree and
four.

IThis is called the Fundamental Theorem of Algebra.
2Conjugation commutes with addition and multiplicatioe, jforx,y € C, X-y = X-y andXx+y = X+.
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2 LECTURE 9. ROOT ISOLATION

Exercise 0.2: Look up the solution method for polynomials of degree thnee apply it tox® — 2x% + 7x+
19. ¢

Exercise 0.3: Look up the solution method for polynomials of degree foul apply it tox* + x3 — 2x? +
X+ 19. &

For polynomials of degree five and higher, explicit solusi@me not available. What does it mean then
to compute the roots of a univariate polynomi&l It can mean different things.

(1) Determine the number of roots &f This is easy. The number of roots biin C counted with multi-
plicities is precisely the degree &f All formulations to follow are non-trivial computationtdsks.

(2) Determine the number of distinct roots bfand their multiplicities).
(3) Determine the number of real roots fof
(4) Determine the number of distinct real rootsfafand their multiplicities).

(5) Isolate the complex roots df i.e., determine triplesé;,ri, ki) with & € C, r; € R, andk; € N with the
following properties.

e The disk (in the complex plane) with ceni®grand radiug; contains &;-fold root of f.
e >k =degf
e The disksD(¢j,r;) are disjoint.

(6) Isolate the real roots of, i.e., determine triplegé;,ri, ki) with £ € R, r; € R, andk; € N with the
following properties.

e The interval (of the real axis) with centérand radiug; contains &;-fold real root off.
e ki is equal to the number of real roots btounted with multiplicities.
e The intervald (&,r;) are disjoint.

(7) As (5) or (6), but guarantee in addition that thare smaller than some presribed

It is also interesting to solve these problems for polyndsnigith special properties, in particular, square-
free polynomials. A polynomial is square-free if all rootoihplex or otherwise) of are distinct. We
will see in Lecture?? how to factor a polynomialf into a productf,f,... fy, n = degf, of square-free
polynomials such that the roots @f are precisely thé-fold roots of f. Hence, restricting attention to
square-free polynomials is justified.

In this section, we will concentrate on (6) for square-freéypomials. We will start with polynomials
with rational coefficients f{ € Q[x]) and then generalize to polynomials with real coefficierf®. will be
the topic of Lecture??.

9.1 Root Isolation for Polynomials with Integer Coefficiens

Throughout this sectionf = ¥ o<y, fix is a polynomial with integer coefficients. This includes tase
that the coefficients are rational numbers; multiplyingvith (a multiple of) the least common multiple of
the denominators of thg’s convertsf into a polynomial with integer coefficients.
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9.1.1 Root Bounds

We derive an upper bound on the absolute value of any rodt 8uch a bound, call B, is very useful. It
allows us to restrict the search for complex roots to the @iskhe complex plane) of radiuB centered at 0
and the search for real roots to the interval of radtwentered at 0. The following result is due to Cauthy

THEOREM1. Let f € R[x], and leté be aroot of f. Then

| i
B:=2 —
1< Bi=2maxse

Proof. Observe first thaB > 2 since the fractionf,| /| fa| is included in the maximization. For the sake
of a contradiction, assumkhas a roo€ with || > B. Then 0= fré" + S o<i<n_1 fi&' and hencefné"| =
|20§i§n—1 fiEI ‘ Thus

B”§|E”|:M§ mmig ?Bi:EBn_l_Bn_L
|f”| 0<i<n |fn| 0§|<n2 2B-1
a contradiction. The last inequality follows froBY2 < B— 1 for B > 2. O

9.1.2 Descartes’ Rule of Sign

Descarte’ established a simple rule for bounding the number of p@sitdéal roots of a polynomial. Let
f=3Yo0<i<n fix € R[x] be a univariate polynomial of degraeWe define th@umber of sign changagar (f)

in the coefficient sequencé f as the number of pair§, j) withi < j, fif; <O andfi,; =...=f; 1 =0.
The sequencé-2,0,+2,+2,—1) has two sign changes.

THEOREM 2 (Descartes) Let f = S o<j<p fix € R[x], f # 0, be a univariate polynomial with real coeffi-
cients. Let PZf) be the number of positive real roots of f counted with muttités. Then

Var (f)— PZ(f) is an even nonnegative integer.

Proof. We may assume thdp # 0. Otherwise, we consider/x instead off. Var (f) is even if fo and f,
have the same sign and is odd otherwise. The sigh(@f is equal to the sign of the constant coefficient
and the sign off (x) for sufficiently largex is equal to the sign of the leading coefficient. Thus the numbe
of real zeros counted with multiplicities is even fff and f,, have the same sign. We have now established
thatVar (f) andPZ(f) have the same parity.

3Augustin-Louis Cauchy (21 August 1789 — 23 May 1857) was a¢henathematician who was an early pioneer of analysis.
He started the project of formulating and proving the thewef infinitesimal calculus in a rigorous manner. He alsoegav
several important theorems in complex analysis and ieitidhe study of permutation groups in abstract algebra. Aopral
mathematician, Cauchy exercised a great influence oveohiemporaries and successors. His writings cover theeeratitge of
mathematics and mathematical physics. Quote from Wikggtinuary 5, 2010).

“René Descartes (31 March 1596 — 11 February 1650) was atFplilosopher, mathematician, physicist, and writer whensp
most of his adult life in the Dutch Republic. He has been ddhibe "Father of Modern Philosophy”, and much of subsequent
Western philosophy is a response to his writings, whichinostto be studied closely to this day. In particular, his Kathns on
First Philosophy continues to be a standard text at mosetsity philosophy departments. Descartes’ influence irharattics
is also apparent, the Cartesian coordinate system—alijogeéometric shapes to be expressed in algebraic equatiorgs rsemed
for him. He is credited as the father of analytical geomebgscartes was also one of the key figures in the ScientificlR&vo.
(Quote from Wikipedia, January 5, 2010)
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It remains to establisiar (f) > PZ(f). We do so by induction on the degree fof If the degree of
f is zero,Var (f) = 0= PZ(f). For degf > 0, consider the derivativé’ of f. By induction hypothesis,
Var (f') > PZ(f'). AlsoVar (f) > Var (f') andPZ(f) < PZ(f’) + 1. Thus

Var (f) —Pz(f) > Var (f') — (PZ(f')+1)) = Var (f') - PZ(f') - 1> —1.
SinceVar (f) — PZ(f) is even, we conclud¥ar (f) > PZ(f). O
The case of zero or one sign change deserves special megtioni

CoOROLLARY 3. If Var (f) =0, f has no positive real root, and Yfar (f) =1, f has exactly one positive
real root.

The rule is easily extended to arbitrary open intervals byiitaBle coordinate transformation. Let
| = (a,b) be an open interval. The mapping

ax+b
X+
X+ 1

maps(0, «) bijectively onto(a,b) and hence the positive real roots of

ax+b

fi(x):=(21+x)"f (ﬁ)

correspond bijectively to the real roots bfin I. We defineVar (f,I) asVar (f;). The factor(1+x)" in
the definition off, clears denominators and guarantees tha a polynomial. We thus have the following
extension of Descartes’ rule to intervals.

THEOREM 4. Let f be a polynomial, let & (a,b) be an interval and let k be the number of zeros of f
(counted with multiplities) in I. Then

Var (f,1) —k is an even nonnegative integer

The number of sign chang&&ar (f,1) of f with respect to an interval is an upper bound on the number
of roots of f in |. It may and, in general, will overestimate the number ofso®he Bulgarian mathematician
Obreschkoff has established tighter bounds/an(f,1).

THEOREM 5 ([?, ?]). Let f be a polynomial of degree n, | an open interval, andg Var (f,1). If the
Obreshkoff lens 4 (see Figure 9.1) contains at least q roots (counted with iplidity) of f, then v> q. If
the Obreshkoff area(see Figure 9.1) contains at most ¢ roots (counted with iplidity) of f, then v< q.
In particular,

# of roots of f in ly < Var (f,l) <# of roots of f in A.

The caseg) = 0 andg = 1 deserve special mentioning. They run under the namesiale-theorem
and two-circle theorem, respectively.

THEOREMG6 ([?, ?]). Consider a real polynomial (k) and an interval I= (a,b) with midpoint m = (a+
b)/2 and let v=Var (f,1).

e (One-Circle Theorem) If the open disc bounded by the cirgle&bitered at mand passing through
the endpoints of | contains no root ofx), then v= 0.
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Figure 9.1: For any with 0 < g < n, the Obreshkoff disk&, andC, for | have the endpoints dfon their
boundary; their centers see the line segnierd under the angle@ = 271/(q+ 2). The Obreshkoff lenk

is the interior ofCqNC, and the Obreshkoff are&, is the interior ofCqUC,. Any point (except fora and

b) on the boundary of\; seesa,b| under an anglet/(q+ 2) (= half the angle at the center) and any point
(except fora andb) on the boundary of 4 seega, b| under angleT— 71/(q+ 2) (= half the complementary
angle at the center). We hatg C L1 C ... CL; C LgandAg C A; C ... C A1 C An. The circlesCy
andC, coincide. They have their center at the midpoint.of he circlesC; andC, are the circumcircles of
the two equilateral triangles havirngas one of their edges. We c@l| the two-circle regionof I.

e (Two-Circle Theorem) If the union of the open discs boundethb circles G and C; centered at
m +i(1/(2v/3))w(l) and passing through the endpoints of | contains precisetyront of f(x), then
v=1

We would expect the number of sign variatioviar (f,l) to be a monotone function in i.e., if | CJ
thenVar (f,l) < Var (f,J). In fact, much more is true. The functiMar (f,I) is subadditive. For a simple
self-contained proof, we refer the reader2Corollary 2.27].

THEOREMY ([?]). Let f be areal polynomial. If the pairwise disjoint open ivi@s J;, ..., J are subsets
of the open interval I, then
Var (f,J3) < Var (f,I).

1<i<t

9.1.3 Proofs of the One-Circle and Two-Circle Theorems

The goal of this section is to prove the one-circle and twoleitheorems. We proceed in two steps. In the
first step, we derive conditions under whighr (f) = 0 andVar (f) = 1, respectively. In the second step,
we transform these conditions to intervals.

LEMMA 8. If all roots of a real polynomial f lie in the closed left halfme of the complex plane (if
& =a+biisaroot of f then a< 0), Var (f) =0.

Proof. Since the nonreal roots dfcome in conjugate pairs, we have

f=f [] -8 [ (x—=&)(x—&).
ECR; f(&)=0 EeC; £(8)=0; 1 m&)>0
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Figure 9.2: The cone mentioned in Lemma 9. [[Ugly figure. Mélan inline figure.]]

If ¢ is a real root off, ¢ < 0 and hence both coefficients ®»f- ¢ are nonnegative. 1€ =a+bi is a
nonreal root off with a < 0, all coefficients ofx — &)(x— &) = x?> — 2ax+ a? + b? are nonnegative. Thus
all coefficients off / f, are nonnegative and hendar (f) = 0. O

LEMMA 9. LetC={{ € C|¢& = \E\ei"’ and2m/3 < ¢ < 4r/3} be the cone with opening angter/3 and
centered at the negative real axis, see Figure 9.2. If a refymomial f has exactly one positive real root
and all other roots in CVar (f) = 1.

Proof. Sincef has a positive real rooYjar (f) > 1. It remains to showar (f) < 1. As in the proof of the
preceding lemma, we write

=t [ x-8 [  x-Hx-d.
ECR; f(&)=0 EeC; f(&)=0; 1 mé&)>o0

We now build the product / f, inductively. We start witkx — & whereé is the positive real root of. Then
we have one sign change. Assume now that we haje= zogigma;xi with Var (h) <1, sayap,...,a <0
anday1,...,am > 0. We will showVar (h- (x— &)) < 1, wheneveé < 0 andVar (h- (x—&)(x—¢&)) <1,
whenever € C\R.

Consider firsth- (x— &)) with &€ < 0. Writeh- (X— &) = So<icme1GX. Thencm.1 =am >0, ¢o =
—agé <0andc=aj_1—&a for1<i<m. Thusc > 0fori>k-+2 andc; <0 fori < k. Whatever the
sign ofcyy1, Var (h- (x—¢&)) < 1.

Consider nexy := h- (x— &)(x— &) with £ € C\R. Let & = a+ib. Thena < 0 andb? < 3a2 and
(x—&)(x— &) = x* — 2ax+a® + b2 Sinceb > 0, we havea < 0. We may substitute-2ax for x without
changing the number of sign changes in either g; this holds since-2a > 0. The substitution changes
X2 — 2ax+ a2 4 b? into 4a%(x? + x+ A) whereA = (a® +b?)/(4a?) and hence 14 < A < 1.

Write g = zogigmﬂcix‘. Thenci=a_2+a_1+Ag for 0 <i <m-+ 2 with the conventiora_, =
a—1=amn1=am2=0. Thusc; > 0 fori > k+3 andc; < 0 fori < kand henc&/ar (g) < 3. Sinceg has
exactly one positive real roo¥ar (g) is odd. It remains to exclude the cager (g) = 3. If Var (g) = 3,
necessarilygg. » < Ccr1. However,

Cktl = -1+ &+ Adki1 definition of 1
< ag+ a1 sinceAd <1,a 1<0,&1>0
<A+ a1t A2 sinceA > 0 andax,» >0
= Cky2 definition of ¢k, ».
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o

o+ Bi

=
S

Figure 9.3: M maps the line with slopg/a through the origin onto the circle with centen(l) +
(a/B)w(l)/2i and passing through the endpointslof (a,b). [[This figure looks ugly. | should learn
how to use IPE.

Recall, the definition o¥ar (f,l). We definedvar (f,I) asVar (f;), where

fi(x) ;== (1+x)"-f (%’) :

The mapping
. ax+b

X+ 1

maps(0,) bijectively onto(a,b) and hence the positive real roots fpfcorrespond bijectively to the real
roots of f in |. We haveVar (f;) = 0 if all roots of f; lie in the closed left halfplane of the complex plane
(equivalently: f| has no root in the open right halfplane) avdr (f,) = 1 if f; has one positive real root
and all other roots in the cor@ (equivalently: has exactly one root outside the c@)e So we need to
ask ourselves: into which region dobs map the open right halfplane and the complement of cone
respectively. These are exactly the regions mentioneckiiie- and two-circle theorems as we show next.

M: x

LEMMA 10. The mapping M maps lines through the origin into circles pagshrough the endpoints of
I. More precisely, a line with slopgis mapped into the circle with centéa+ b)/2+ ((b—a)/(2y))i and
passing through the endpoints of |, see Figure 9.3 for aisitation.

Proof. The proof is a straightforward but somewhat tedious calmra\We observe first that

ax+1_a+b+b—a 1—x
x+1 2 2 1+x

Therefore is suffices to prove that the mapping x — (1—x)/(1+x) maps the lin¢ with slopey into the
circle C, with center O+ (1/y)i and passing through the pointsl + Oi.

Let o + Bi be an intersection of with the unit circle. Thery = 8/a anda? + 3% = 1. The points orf
are parameterized &g + Bi)t with t € R. M maps(a + i)t into

1-at—Bti  (1—at—Bti)(1+at—pti) 1-2pti—t2 1t N —2pt i
1+at+Bti (L+at+Bti)(1+at—pBti)  1+2at+t2  1+2at+t2  1+2at+t2°
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The parameter value 0 is mapped te Qi and the parameter valwe is mapped to-1+ 0i. The squared
distance of the generic image from the centeCpis

( 1-t2 )2 ( —2B a>2:Bz(l_tz)+(—232t—a(l+2at+t2))2

1+ 2at +t2 1+2at+t2 B B2(1+ 2at +12)2
_ BA1-t?)+ (—a—2t—at?)?
N B2(1+ 2at +t2)2
B2 —2B%? +t* + a? + dat + (4+ 20%)t? + 4atd + a’t?
N B2(1+ 2at +12)2

_ 1tdat+ (—2B%+ 4+ 202)t2 + dat3 +t*

© B2(1+4at+ (424 2)t2 4+ 4atd +t4)
1

= F’

since—2B2 + 4+ 2a? = 4a?+ 2. We have now shown théd maps¢ onto the circle with center @ (1/y)i
and passing througtt1 + Oi. O

It is now easy to prove the one- and two-circle theorem. WeNar (f;) = 0 if f| has no root in the
open right halfplane. By Lemma 18] maps the imaginary axis (this is a line with slope- ©) onto the
circle Cy centered at the midpoint dfand passing through the endpointsl oiContinuity tells us that the
two open halfplanes defined by the imaginary axis are mapgedtfe interior and exterior of the circle,
respectively. The right open halfplane is mapped into therior since the positive real axis is mapped onto
I. Thusf, has no root in the open right halfplane if and onlyf ifias no roots insid€y. This establishes the
one-circle theorem.

We come to the two-circle theorem. We haver (f;) =1, if f; has exactly one root outside the cone
C. This cone is bounded by the ratys- t + ++/3ti, t € R>o. By Lemma 10M maps the supporting lines
of these rays into the circlé®, andC; centered atny +i(1/(2v/3))w(l) and passing through the endpoints
of I. The complement of the corigis the union of two open halfplanes. These open halfplaresapped
into the interior ofC; andCy, respectively. Thug; has exactly one root outsi@if and only if f has exactly
one root in the union of the interiors 6 andC;. This establishes the two-circle theorem.

[[ drawings would be helpful]]

9.1.4 A Bisection Algorithm for Root Isolation

[[The polynomial is now calledp]]

For a real root of p, let o(z p) be the minimal distance afto another root op. For a nonreal root
of p, let a(z p) be the absolute value of its imaginary coordinate. dgp) be the minimal value o (z, p)
over all roots ofp. For an interval = (a,b), letw(l) := b— abe its length or width.

Algorithm 1 shows a bisection algorithm for isolating thet®of a real polynomiap in an open interval
lo based on Descartes’ rule of sign. The algorithm requireistkiegareal roots op in Iy are simple. If the
requirement is not met, the algorithm diverges. It mairgairsetA of active intervals. InitiallyA contains
lo, and the algorithm stops as soonfs empty. In each iteration, some intervat A is processed. The
action taken depends on the intelfar (p, 1), the outcome of Descartes’ rule of signs appliegh tndl.
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Algorithm 1 Bisection Algorithm for Isolating Real Roots
Require: p= Y o<i<n piX is a real polynomial ant is an open interval. The real roots pfn I are simple.

Ensure: returns a lisO of isolating intervals for the real roots @fin I.

A:={lp} {list of active interval$
0:=0 {list of isolating interval$
repeat

| ;== some interval imA; deletel from A;

if Var (p,l) = 0 do nothing;

if Var (p,1) =1 addl to O;

if Var (p,1) > 2then
let] = (a,b) and seim:= (a+b)/2;
if p(m) =0 add[m,m| to O;
add(a,m) and(m,b) to A,
end if
until Ais empty
return O

If there is no sign changé,contains no root op and we discard it. If there is exactly one sign change,
| contains exactly one root gf and hence is an isolating interval for it. We adtb the listO of isolating
intervals. If there is more than one sign change, we divideits midpoint and add the subintervals to the
set of active intervals. If the midpoimis a zero ofp, we add the trivial intervalm, m| to the list of isolating
intervals.

Correctness of the algorithm is obvious. Termination anchgexity analysis rest on the one- and
two-circle theorems.

LEmMMA 11. No interval of lengtho(p) or less is split.

Proof. Such an interval, recall that is is open, cannot contain &b moots and its two-circle region cannot
contain any nonreal root. Thdér (p,l) <1 by Theorem 6. O

THEOREM 12. The depth of the recursion tree is at msg(w(lp)/o(p)). The total size of the recursion
tree is Qnlog(w(lg)/o(p))).

Proof. The root of the recursion tree has an associated intervanofthw(lp), every internal node has an
associated interval of length at leastp), and the interval associated with a node has half the lerfgtieo
interval associated with the parent. Thus the depth of aeyrial node (the depth of the root is zero) is at
most logw(lp)/a(p)).

At any level of the tree, we can have at moge internal nodes. This holdss since the intervals are
associated with the internal nodes at any level are disgwidthence their sign variations add to at nrosy
Theorem 7. Each internal node contributes at least two sagiations. Thus the number of internal nodes
is at most(1+ log(w(lo)/o(p)))n/2.

The recursion tree is binary, i.e., each nonleaf has exaetbychildren. In such a tree the number
of leaves is equal to the number of internal nodes plus oneus The total size of the tree is at most
1+ (1+log(w(lo)/a(p))n. O

[[[what was called fbefore is now called d]
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The computation ofy from p at every node of the recursion is costly. It is better to stoith every
intervall = (a,b) the polynomialp, (x) := p(a+ x(b—a)), whose roots ir{0,1) correspond to the roots of
pinl. If I is splitatm= (a+b)/2 intol, = (a,m) andl, = (m,b), the polynomials associated with the
subintervals are

p,(x) =2"pi(x/2) and p, (x) =2"pi((1+x)/2) = pi (1 +X).

Also, g (X) = (1+X)"p(1/(1+X)). The polynomialsp;,, p;,, andg, can be obtained frorp, by n? addi-
tions. Also, if the coefficients are integral, the coeffitgegrow byO(n) bits in every node.

[[todo: give more details and do complexity analysis]]

9.1.5 The Continued Fraction Algorithm for Root Isolation*

[[give a brief account of the continued fraction method.]]

9.2 Root Isolation for Polynomials with Real Coefficients

We extend the findings of the preceding section to polyn@amiath real coefficients. In principle, there
is no need for extending. Algorithm 1 works perfectly for ypmdmials with real coefficients. There is a
problem however. We need to determine the number of sigatedions in sequences of real numbers, e.g.,

in
(1, —V/2,v/2, ).

This is computationally hard. The sign determination otalgic expressions is the topic of Lect@®

We take a different route in this section. We assume that weaparoximate the coefficients with any
desired accuracy, i.e., for any coefficiehand any integet., we can compute a binary fractidn= F /2-
with F € Z and| f; - fi\ <2t eg.F=|fi2t] or R = [fi2"]. Alternatively, we view the coefficients as
binary numbers with potentially infinite binary places aftee binary point;f; is then obtained by keeping
the firstL digits after the binary point.

We pursue the following idea. In order to isolate the root$ ef 3 o, fix, we perform the following
three steps:

(1) Approximatef by a polynomialf = Y o<i<n fixi, where eactf; is a binary fraction approximating.
(2) Isolate the roots of by means of the Algorithm 1.

(3) return the isolating intervals for the roots bfafter a suitable widening) as isolating intervals for the
roots of f.

Since the roots of a polynomial depend continuously on ieffiments such an approach might work;fif

is sufficiently close tof, the roots off should be good approximations for the rootsfofThus ifl is an
isolating interval for a root of, a slightly widened might be an isolating interval for the corresponding
root of f. In order to turn the idea into an algorithm, we need to overesome obstacles.

e How well do we have to approximate the coefficients @f

e Algorithm 1 may return isolating intervals sharing an endpadf we widen such intervals, we loose
disjointness.
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We overcome the second problem by modifying the algorithighsly. Instead of recursing only for
intervalsl with Var (p,1) > 2, we recurse for all intervals wittfar (p,1 ™) > 2, wherel * is the interval of
length 5v(1) enlargingl by 2w(I) on either side, i.e., if = (a,b), T = (a—2(b—a),b+2(b—a)). We call
I+ the extensiorof | or anextended interval

The small change ensures that isolated intervals are wpé#rated, see Lemma 16, without increasing
the depth of the recursion by much, see Lemma 15. It has tregiie effect that the algorithm also
computes an estimate of the root separation of the inpunpatyal, see Lemma 17. Before, we state and
prove these Lemmas, we address item (1). We remarked akmvbdiroots of a polynomial are continuous
functions of the coefficients. Schonhage proved a quargtaersion of this fact. For a polynomig =

S o<i<n PiX, |P| = So<i<n|pi| denotes the 1-norm g.

THEOREM 13 ([?7]). Let p= Yo<i<n X = pn Mi<i<n(X—2) be a polynomial of degree n witla| < 1 for

alli. Let p be a positive real witiu < 2~ and let p(X) = Y g<i<n PIX = Pjy[N1<i<n(X—Z") be such that
[p—p*| < Hlp|.

Then up to a permutation of the indices of tkie z

7 -2l <9V

Proof. We prove the stronger claifz’ —z| < y/f under the additional assumptioggs < o(p)/2 and
[p—p*[ < plpql-

Letz be a root ofp, letg(x) = p*(z +X)/p;,, and let; be a root ofg of smallest modulus. Thex+ x;
is a root ofp* andg is monic. Sinceg is monic, the product of its roots is equal (up to signy¢d). Since
X; is a root ofg of smallest modulus, we hayg|" < |g(0)|. Thus

%] < V/19(0)]

=V/1p*(z)—p@)|/|pil sinceg(0) = p*(z) andp(z) =0
é\"/ ; o« —pg| / Pyl 12
0<k<n
é\"/ ; px—p;| /1P since|z| < 1
0<k<n
<VH since|p—p*| < u|pyl

So for any root; of pthere is a roor; of p* of distance at mosy/i1 and hence of distance less tha(p)/2.
Since any two roots op are at leastr(p) apart, we have a bijection between thand thez'. O

[[my notation is not consistent: In the proof abowgp) is the smallest distance between any two roots of
p. The definition given in Subsection 9.1.4 is differenthéiintroduce two concepts or change the
definition given in Subsection 9.1.4.
Also, what was called before is now called ]]

Theorem 13 requires all roots @fto lie in the unit circle. It is easy to guarantee this cormditi Let
P = So<i<nPX € R[x]. By Theorem 1, the absolute value of all rootdRa strictly bounded by
R

B:= ZOrQiagﬁﬂ.
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Let p(x) := P(2Bx). Then all roots ofp have modulus less than 1/2. Thus Theorem 13 appligs to

What is a good choice fou and how can we determineg with |p— p*| < u|p|? We will address
these questions in two steps. We first assume that we knovethaseparation op (more precisely, have a
lower bound for it) and then we show how to do without this agstion.

9.2.1 The Case of Known Root Separation
We chooseu such that the following three properties hold:

e 11 <27 this is required by the Theorem.

e 9/ < 1/2; this guarantees that roots move by at most 1/2 and henaeogd| of p* have modulus at
most 1. Thus it is safe to start root isolation fwrwith the start interva(—1,+1).

e 99/ < 0(p)/12; this makes sure that roots move by at nmgb) /12. Since the imaginary part of a
nonreal root ofp is at leasto(p)/2, nonreal roots op become nonreal roots @f. Since real roots
of p have distance at least(p) from each other, real roots gfbecome real roots g§*. Thusp and
p* have the same number of real roots. Also,

o(p’) = o(p) —20(p)/12=50(p)/6.
Similarly o(p*) < o(p)+20(p)/12=7a(p)/6.
Exercise 0.4: Show thatu < 2= implies Q/m<1/2. O
LEMMA 14. Assumer < min(1/2,0(p) and letu = (0/108". Then
o p<2 ™M 9y<1/2 and9yH < o(p)/12
o o(p’) > 50(p)/6 > 90YL.

Now that we know how to choose, we come to the choice g¥*. For each, we determine a binary
fraction p* with |pf — pi| < 27" for a still to be determined.. Then|p*—p| < (n+1)2"-. We need
|p* — p| < u|p| and therefore choodesuch that

oL HIP|
“n+1
We can now state the algorithm, see Algorithm 2. The onlyedéfiice to Algorithm 1 is that we now recurse
wheneveNar (p*,17) > 2.

LeEMMA 15. Algorithm 2 generates no interval of length less tlmip*)/10.

Proof. Consider any intervdl with w(l) < o(p*)/5. Thenw(l™) < g(p*) and hence either the one- or the
two-circle theorem applies to". ThusVar (p*,17) <1 andl is not split. Thus only intervals with length
> o(p*)/5 are split and hence no interval has length less thgt)/10. O

Let O* be the list of isolating intervals computed fpt. Any interval inO* is either a singleton or has
length at leastr(p*)/10. For an interval, let [ be its expansion by @1 on both sides, i.e, if = (a,b),
theni = (a— 9y/H, b+ 9y/H) and ifl = [m,m], thenl = (m— 9y, m+9y/H). If | is an isolating interval
for a real root ofp*, i contains the corresponding root jof
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Algorithm 2 Bisection Algorithm for a Real Polynomigl with Root Separation Estimate
Require: p is a real polynomial with roots in the disc of radius 1/2 ceateat 0,0 < min(1/2,0(p)),

= (0/108", |p; —pi| < ulpl/(n+1) foralli.
Ensure: returns a lisO* of well-separated isolating intervals for the real rootptaf
A={(-1,1)} {list of active interval$
=0 {list of isolating interval$
repeat

| := some interval imA; deletel from A,
" =(a—2(b—a),b+2(b—a)), wherel = (a,b);
if Var (p*,1™) > 1then
add(a,m) and(m,b) to Awherem= (a+b)/2;
if p*(m) =0 add[m,m| to O,
else
if Var (p*,1) = 0 do nothing;
if Var (p*,1) =1 addl to O*;
end if
until Ais empty
return O

LEMMA 16. O:= {i || € O*} is a set of isolating intervals for p.

Proof. By our choice ofu, p andp* have the same number of real roots and each expanded intentains
a real root ofp. We need to argue disjointness.

Let| andJ be two intervals irD*. If | andJ are singletons, they have distance at leggt*) from each
other. Sinceo(p*) > 90,/H, disjointness is preserved after expanding both intervals

So assume, that at least one of the intervals is not a simgls&yl. We may also assume(l) > w(J).
Sincel andJ are inO*, both contain a real root gf*. If I would containJ, it would contain two real roots,
and we would hav&ar (p*,1™) > 2. Sol would be split. Thus™* does not contaid and hence is disjoint
from J (sincew(l) > w(J)). Thus the distance dfandJ is at least 2/(1). Also,

2u(t) > 2P > 189w

by our choice ofu and hencé andJ are disjoint. O

This concludes the analysis of modified algorithm. It corepusolating intervals fop and its recursion
depth is not much larger than for the original algorithm. dtawback is that it needs an estimatewvith
o < o(p).

9.2.2 The Case of Unknown Root Separation

The nice thing is that the algorithm computes such an estimat

LEMMA 17. Algorithm 2 refines at least one interval to a length less thap®).
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Figure 9.4:1 = (a,b), I = (c,d), andL,, denotes the Obreshkoff lehg(I*). The height olL, at endpoint
of | is at leash, whereh = 2w(I)tan(rr/(2(n+2))) > 2w(l)/(n+2) > w(l)/n. By Theorem 5Var (p*,17)
is at least the number of roots pf in the rectangleé x [—hi, +hi.

Proof. We distinguish cases. I(p*) is equal to the distance of two real roots, lebe the separating
interval computed for one of them. Ther{l) < o(p*)/2 because otherwide” would contain both roots
andl would be split.

If o(p*) is equal to the imaginary coordinate of a nonreal root, a®rsa leal of the Descartes tree with
the property that the real part of the root is contained inctbsure ofl. Sincel is a leaf,Var (p*,1") <1
and hences (p*) > w(l)/n, see Figure 9.4. O

Exercise 0.5: Show that Lemma 17 is not true for Algorithm 1). Consigéx) = x?+ &2 = (x—i6)(x+i0)
with d =~ 0. This polynomial has a pair of conjugate complex rootsigt and hence separatiod2
However,Var (p,(—1,1)) = 2 andVar (p,(—1,0)) = Var (p,(0,1)) = 0. Verify these statements.
Thus the algorithm ends with intervals of lengtf2lalthough the separation may be arbitrarily small.

¢

Exercise 0.6: In Algorithm 2 we split all intervald satisfyingVar (p,1") > 2. Is there a less agressive
rule, which still guarantees a variant of Lemma 17. The goress how to handle intervals with
Var (p*,1) <1 andVar (p*,17) > 2. &

Lemma 17 yields a simple method for verifying whether a guessno larger tharo (p).
LemMMA 18. If Algorithm 2 produces no interval of length less thHamo theno < a(p).
Proof. The algorithm produces an interval of length at moet p*) and hence 20 < no(p*). Also,
o(p*) <o(p)+18yu=0(p)+0c/6. Thus
20<0(p’)<a(p)+a/6
and hences < a(p). O

We can now state the complete algorithm for isolating theésrad a polynomial with bitstream coef-
ficients. We start with an initial guess = 1/2; then(o/108" < 2=, We computeu and p* and run
Algorithm 2 onp*. If no interval of length less tham® is produced, we have < g(p) and the algorithm
returns isolating intervals fop. On the other hand, if an interval of length less thaw 2s produced, we
take this as an indication that our current guess is too lavije replaces by o2 and repeat. We obtain
Algorithm 3. It remains to estimate how smallcan become.
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Algorithm 3 Bisection Algorithm for Real Polynomials
Require: p= 3 o<j<n pix and all roots ofp lie in a disc of radius 1/2 centered at 0. Real roots are distin

Ensure: returns isolating intervals for the real rootspf

o=1/2;
p=(0/108";
while (true) do
chooses < p1|p|/(n+2) and letp* be such thatp’ — pi| < u|p|/(n+1) for all i;
run Algorithm 2 onp* and start interval = (—1,1); /l we do not guaranteg < (o(p)/108)"
if the algorithm does not produce an interval of length less #mar then
exit from the loop;

else
2
o =0%
end if
end while

returnO:= {i || € 0*}

LEMMA 19. Algorithm 3 stops with

(1 o(p) 2
> - .
g =min (2’ <20n+ 1)
Proof. If the algorithm stops in the first iteration, it stops with= 1/2. If the algorithm performs more
than one iteration, consider the next to last iteration. #terval of length less thamn# is produced. On
the other hand, by Lemma 15, no interval of length less thgpi) /10 is generated. Thus@ > o(p*)/10
and hence 2@o > o(p*) > o(p) — 18y/0 > o(p) — /6 and finallyo > o(p)/(20n+ 1).

Sinceo is squared from one iteration to the next, we have (o(p)/(20n+ 1))? in the last iteration.
U

9.3 Further Reading

See P, ?] for extensive treatments and references.



