
Chapter 1

Delaunay Triangulation and
Voronoi Diagrams

(with material from [1], [3], and [4], pictures are missing)
In this lecture we partition the convex hull induced by a set of points.

We triangulate the area. A triangulation T of a set of points P ⊆ R is a
decomposition of the convex hull CH(P) into triangles, so that the vertices of
each triangle are points in P , and every p ∈ P is the vertex of some triangle
(see Figure ??) for an example. The property of a triangulation is that any
two triangles are either disjoint or share an edge.

How to compute a triangulation? A simple way to obtain one, is to extend
the sweep-like algorithm for computing the convex hull: When a point p (in
lexicographic order) is processed, it “sees” a set of edges of the current convex
hull. For each such edge, add a triangle with a third vertex being equal to p.

The number of triangles (and edges) is always the same in any triangu-
lation of P . It depends on the number of points belonging to ∂CH(P), the
boundary of the convex hull (not needed to be identical to the number of
vertices of CH(P)).

Theorem 1. For a set of points P (not all collinear), with k points on
∂CH(P), T (P) consists of 2n− 2− k triangles and 3n− 3− k edges.

Proof. Let m be the number of triangles. Following there are nf := m + 1
two-dimensional faces in R2 subdivision induced by T (P). Each of the m
triangles has 3 edges, the unbounded face (containing CH(P) as a hole) has k
edges. Every edge is incident to two faces. In total we have ne := (3m+k)/2
edges in T . Euler’s formula states: n− ne + nf = 2 (where n is the number
of points and nf is the number of faces). Putting together: m = 2n− 2− k,
which implies ne = 3n− 3− k.

1

2CHAPTER 1. DELAUNAY TRIANGULATION AND VORONOI DIAGRAMS

1.1 Representation

It is convenient to only consider the triangles in a data structure that rep-
resents a triangulation at once. The problem is the unbounded face that
contains CH(P) as a hole. But there is a nice trick: It is very common to in-
troduce an “infinite” vertex vinf and “infinite” edges each connecting a vertex
of CH(P) with vinf . Following we also have “infinite” faces, namely those that
are incident to vinf and to end edge of CH(P). This has implications as now
each edge is incident to two faces (triangles) and we decomposed the plane
into finitely many triangles, where non-infinite ones are actual triangles of
the triangulation.1 Note: The infinite vertex has no geometric coordinates
and no geometric operation can be applied to it, or to any of its incident
edges and faces.

A triangulation is usually stored with a vertex-based representation (pre-
ferred over edge-based representations, that we see in Lecture ??). This saves
spaces and also results in faster algorithms [2]. Besides vertices, faces are
central. Given a triangular face ∆, it provides access to its three vertices
v1, v2, v3 (in counter-clockwise order) and to the three neighboring faces (tri-
angles) ∆1,∆2,∆3 (with the convention that ∆(vi) is opposite to the vertex
vi, and also in counter-clockwise order). Note that for proper triangle all
vi are non-infinite and there is at most one infinite triangle. For an infinite
triangle, exactly one vertex is equal to vinf and two neighboring faces are
infinite, too. There are functions to access the vertices’ neighbors in clock-
wise and counterclockwise order. Similar the neighboring faces “rotate” in
clockwise- and counterclockwise fashion. Edges are not explicitly stored. The
implicit storage relies on the adjacency information of triangles: Each edge
has exactly two vertices (in two different triangles) to which it is opposite.

1.2 Adding points

The sweep algorithm is not directly able to add points to a triangulation.
What to do when a new point should be inserted? We first have to locate
the triangle whose interior contains the new point and then split the triangle
into three, by adding edges from each vertex to the new point (vertex). In
case the new point hits a vertex, we are already done, and if it is contained
in the interior of edge, then we split the edge at the point and split the two
incident triangles into two by adding for each an edge from its third vertex
to the new points (vertex).

The open question is how to locate the triangle (edge/vertex) in (ex-
pected) sub-linear time. This can be done, for example, by a line traversal
starting in some (given = hint) vertex. The expected search time (if points
are uniformly distributed) is O(

√
n).

1Actually, the “surface” we obtain is topologically equivalent to the unit-sphere.

1.3. TERRAINS 3

More efficient queries can be achieved with a hierarchical triangulation
(which usually work best for Delaunay triangulations, see below). At the
bottom level, the actual triangulation is stored (to where actual operations
are applied). In a higher level, only a random subset of the points in the level
below is triangulated. Point location is then done by a top-down nearest-
neighbor query starting in the top-most triangulation. For each following
level, the next nearest neighbor in that level can be found by start walking
from the nearest neighbor found at the preceding level.

1.3 Terrains

We want to model the earth’s surface (restricted to a piece where the earth’s
spherical shape is not “critical”). Even then, a purely planar triangulation
only suffices for very few countries. Usually we have to model mountains
and valleys. For that we consider terrains. It is a two-dimensional surface
in a three-dimensional space, that is, a function f : A ⊂ R2 → R. The
function assigns a height to every point in the domain A. Naturally we do
not know all heights of the earth, but only for a finite subset (e.g., by satellite
measurements). That is, we want to approximate the height for points we
do not have a value. Naively, we can simply assign the function value of
the closest point. However, this terrain looks rather ugly, in particular, it is
non-continuous (and so very unnatural).

Instead, a triangulation is often used for the interpolation of functions.
Assume that for given point set P ⊂ R we know function values f(p) for
p ∈ P . Out goal is to get “some” value for each point p̃ ∈ CH(P). This can
be done by first triangulating P and obtain T . In a second step we construct
a special surface in R3 consisting of as many (spatial) triangles as in T , that
is, for a planar triangle ∆(p, q, r) we will have ∆′(f(p), f(q), f(r)) in R3.
Aiming for f̃(p̃) with p̃ ∈ CH(P) (where f̃ is an interpolated value of f at
p̃), we first obtain the triangle ∆ in T that contains p̃ (by a point-location
query) and then return the height of ∆′ over p̃. This can be computed using
barycentric coordinates. That is, if p̃ ∈ ∆ = (p, q, r), there exists cp, cq, cr
with cp + cq + cr = 1, such that p̃ = cpp+ cqq + crr. Then, f̃(p̃) is set to be
equal to cpf(p) + cqf(q) + crf(r). Such a terrain is polyhedral, a piecewise
linear function.

An open question is: How to triangulate P? The problem is that we
do not know the original terrain, so a definite answer is hard to obtain.
Theoretically, all possible triangulations seem to be equally good. However,
some of the final terrains look more “natural”. Luckily there is only a finite
set of triangulations, so we can aim for a “nice” one. But what does it mean
for a triangulation to be nice.

PICTURE
Skinny triangles, that is, triangles with (very) small angles lead to inter-

4CHAPTER 1. DELAUNAY TRIANGULATION AND VORONOI DIAGRAMS

polated function values whose interpolation points are very far away. That
is, we aim for a more balanced situation.2 That is we aim for “fat” triangle
over “skinny” ones. More formally, it would be nice to maximize minimal
angles.

1.4 Delaunay

Definition 2. A Delaunay triangulation (DT) is a triangulation of a point
set P , where the circumcircle of each triangle contains no other point of P .

We first consider the 3m angles in a given triangulation T . Let sort them
in a vector A(T) in increasing order (α1, . . . , α3m), the angle-vector of T .
For two triangulations T , T ′ we can compare the angle vectors (of same size)
lexicographically, that is, A(T) > A(T ′) if ∃i with 1 ≤ i ≤ 3m such that
αi = α′i for all j < i and αi > α′i. T is angle-optimal if A(T) ≥ A(T ′) for
all T ′. We often aim for such a triangulation.

Consider two adjacent (proper) triangles that form a convex quadrilat-
eral, for example for two triangles (pi, pj , pk), (pi, pl, pl) adjacent to an edge
e = pipj of some T (P) that is not part of ∂CH(P). The angle vector has six
entries A = (α1, α2, α3, α4, α5, α6). The quadrilateral can be re-triangulated
(here we make use of its convexity) by exchanging the diagonal pipj by the
diagonal pkpl — a so-called flip. Let A′ = (α′1, α

′
2, α
′
3, α
′
4, α
′
5, α
′
6) denote

the new angle-vector. If A′ > A, then the minimum angle in a triangle is
increased.

1.4.1 Properties

Theorem 3. Every finite point set in R2 has a Delaunay triangulation.

The proof is actually the basis for the flipping algorithm.

Proof. The proof is three-step.

• We start with a convex quadrilateral. There are only two triangula-
tions. Using Thales’ theorem, we can show that exactly one of the
diagonals is an illegal.

• In any non-Delaunay triangulation T of P search for an edge that is
an illegal diagonal in a convex quadrilateral. These two triangles are
locally non-Delaunay. Assuming the (1), we flip the diagonals, which
increases the angle-vector of the quadrilateral and so of T . As there
are only finitely many triangulations, the process stops.

2Assuming that the original terrain is continuous and the local feature size (to be
defined) is not too small.

1.4. DELAUNAY 5

• Consider a triangle ∆(p, q, r) and another point s in one of the chords
defined by the triangle and its circumcircle - say the one defined by
pq. There is an adjacent triangle ∆(p, q, t). If t is in that chord, we
found a pair of triangles with an illegal edge. Otherwise, s must also
be contained in the circumcircle of ∆(p, q, t), but it is closer to a point
of ∆(p, q, t) than to any point of ∆(p, q, r). Now we can repeat the
argument with ∆(p, q, t) and s - but only a finite number of times,
where we have to arrive at the first case.

If no four points in P lie on a common circle, the Delaunay triangulation
is a proper triangulation. Otherwise, there may be faces with more than
three sides (needs further triangulation). A DT also optimizes other criteria.
The maximization of the minimal-angle is direct (or more precisely: a DT
lexicographically maximizes the angles from smallest to largest). Beyond,
one can show that the maximum radius of a circumcircle is minimized (and
more).

1.4.2 The flipping algorithm

Several algorithms exists to compute a DT: Sweep, incremental insertion,
divide-and-conquer. A very simple one is based on the observation made
above, namely to make a triangulation locally more and more “Delaunay”
by flipping edges until no further improvements are possible. That is also
why we call it the flipping algorithm. It has a worst-case running time of
O(n2) (which is inferior to others), but we study the usage of the side-of-
circle predicate which is central to all algorithms. So we have chosen this
simple algorithm.

We initially compute any triangulation T (P), for example, using a sweep
approach. Let e = pipj be an non-convex-hull edge. With Qe = piplpjpl we
denote the quadrilateral defined by the two adjacent triangles that share e.
If Qe is convex, the edge e is said to be illegal if each triangle circumcircle
contains the missing fourth point. Note that here we utilize the side-of-circle
predicate discussed in the tutorials. If e is illegal, we flip diagonals in Qe,
that is, we replace e by the other diagonal pkpl.

Algorithm 1 Flipping algorithm
Obtain an initial triangulation T
while T is not Delaunay do
find quadrilateral Qe with illegal edge e
flip diagonals in Qe

end while

6CHAPTER 1. DELAUNAY TRIANGULATION AND VORONOI DIAGRAMS

The algorithm terminates for two reasons: There are only finitely many
different triangulations and, in each step we make the angle-vector larger.
There is also another proof which relates a DT to a convex hull in R3. We
present the idea and the theorem below.

In an actual implementation we would maintain a queue of potentially
illegal edges. An edge not in the queue is either an edge of CH(P) or the two
adjacent triangles form a non-convex quadrilateral, or the convex quadrilat-
eral of them is already locally Delaunay. We initialize the queue with all
interior edges of an initial triangulation. In each step, we remove one edge
of the queue, and if we flip diagonals in a convex quadrilateral, its outer
non-convexhull edges are added to the queue.

Algorithm 2 Flipping algorithm with queue
Obtain an initial triangulation T
Initialize a queue with all non-convexhull edges
while queue is not empty do
remove front edge e
if Qe is reversed then
flip diagonals in Qe

append non-convexhull outside edges pipl, plpj , pjpk, pkpi to queue
end if

end while

1.4.3 More properties

Two other properties are also useful: Given two points p1, p2 ∈ P . There
distance along edges of DT (P) is at most 2.42·d(p1, p2), where d(·, ·) denotes
Euclidean distance in R2.

We also mention that the minimum spanning tree of P (MST(P)) is a
subgraph of DT(P). Following, in order to compute the MST one can start
with computing a DT and compute the tree only on DT’s edges, instead of
starting with a full set.

1.4.4 Delaunay triangulation via convex hull

Consider the map:

` : R2 → R3 with `(px, py) = (px, py, p
2
x, p

2
y)

that is, we map any point in the plane onto the paraboloid centered at
the origin with equation z = x2 + y2. Then DT(P) equals the projection of
the lower convex hull of the lifted points (pix, piy, pi

2
x + pi

2
y), 1 ≤ i ≤ n.

Sketch of proof: Consider three points p, q, r ∈ P sorted counter-clockwisely
on a circle. The triangle ∆(p, q, r) is part of DT(P) if there is no s ∈ P ′ :=

1.5. VORONOI DIAGRAMS 7

P \ {p, q, r} lying in the circumcircle of ∆(p, q, r). This is equivalent to
say that side-of-circle(p, q, r, s) > 0 for all s ∈ P ′. We next use the three-
dimensional orientation predicate (without proof): Given for four points
p′, q′, r′, s′ ∈ R3 and p′, q′, r′ define a plane E′:

orientation(p′, q′, r′, s′) = sign det

∣∣∣∣∣∣∣∣
1 p′x p′y p′z
1 q′x q′y q′z
1 r′x r′y r′z
1 s′x s′y s′z

∣∣∣∣∣∣∣∣ =

−1, s lies below E′

0, s is contained in E′

1, s lies above E′

Note that the side-of-circle-predicate is identical to this orientation pred-
icate for the chosen paraboloid. If we write orientation(p, q, r, s) > 0 for all
s ∈ P ′, we know that `(s) lies above the plane defined by the three points
`(p), `(q), `(r). But this is just expressing that ∆(`(p), `(q), `(r)) is a facet
of the lower hull of `(P).

We can exploit this “dualism” a little bit further: If a convex hull is
unique, then the Delaunay triangulation must also be unique, as every con-
vex hull can be mapped onto a Delaunay triangulation. If we consider again
a convex quadrilateral, its Delaunay triangulation corresponds to the lower
hull of the lifted points, while the flipped (illegal) triangulation corresponds
to the upper hull (play with the predicates to see it). An arbitrary triangu-
lation corresponds to a surface spanned between the points lifted onto the
paraboloid. Flipping illegal diagonals transforms this surface towards the
lower hull of the lifted point set.

1.5 Voronoi Diagrams

There is also a relation of Delaunay triangulation and the Voronoi diagram.
What is the Voronoi diagram? Think of being a fast-food company and
you want to open a new store at a certain location. Obviously you want
to be successful, so it would be nice to estimate the number of customers
it can reach. That is, to answer a question like: To which store does a
customer travel? Or if you are a cell-phone company, and you want to install
a new antenna. Then the question is, in which area around the antenna do
cellular phones connect to this new antenna? To answer such question, there
are Voronoi diagrams in computational geometry. A Voronoi diagram is a
partitioning of a space (often R2) induced by a set of sites P . This is often
a rather simplified assumptions as costs to reach a site (e.g., a store) may
vary or prices are in different sites are not really identical. But assuming so,
gives a at least a good estimate.

Let us first give some notation. Let d(p, q) =
√

(px − qx)2 + (py − qy)2

the Euclidean distance between two points in the plane. Furthermore, the

8CHAPTER 1. DELAUNAY TRIANGULATION AND VORONOI DIAGRAMS

set of sites P consists of n points p1, . . . , pn. The Voronoi diagram Vor(P) is
the subdivision of R2 into n cells, namely one for each site V(pi). Each cell is
having the property that for any point q ∈ V(pi), we have d(q, pi) < d(q, pj)
for any j 6= i. The bisector B(pi, pj) := {x ∈ R2|d(x, pi) = d(x, pj)} is the
set of points that have equal distance to two sites. In case of sites being
points the bisector is formed by a line perpendicular to the segment pipj . It
splits the plane into two half-planes. The plane that contains pi is denoted
by h(pi, pj), the other that contains pj is called h(pj , pi). It is clear that
q ∈ h(pi, pj) if d(q, pi) < d(q, pj). This observation allows us to define the
set of a Voronoi cell: V(pi) =

⋂
1≤j≤n,j 6=i h(pi, pj). One can immediately

see that the boundary of a (possibly unbounded) Voronoi cell consists of up
n− 1 vertices and n− 1 edges. Such a cell is also convex.

But what about the entire Voronoi diagram? Let us first introduce an
opposite definition: C(x) := {p ∈ P |d(x, p) < d(x, q) with q ∈ P}. This set
comprises all points of P which minimize the distance to a given x ∈ R2.
In general, the cardinality is one, except for points x contained in a bisector
(or intersections of bisectors). The Voronoi diagram is exactly the set of
points, for which the cardinality of C is larger than one: Vor(P) := {x ∈
R2 : |C(x)| ≥ 2}. A vertex v of Vor(P) is a point with |C(x)| ≥ 3, edges have
cardinality 2 and cells only 1.

Theorem 4. For Vor(P) it holds:

1. q is a vertex of Vor(P) iff largest empty circle CP (q) contains at least
three points of P .

2. B(pi, pj) defines an edge e of Vor(P) iff there is q ∈ e such that CP (q)
contains pi and pj but no other site.

Proof. 1. Assume there is q with CP (q) containing three sites pi, pj , pk.
Since the circle’s interior is empty, q must be on the boundary of each
V(pi), V(pj), and V(pk) and so q must be a vertex of Vor(P).

In the other direction, each vertex q is incident to at least three edges
and so to at least three proper Voronoi cells. So, q is equidistant to at
least the three sites of the three cell, and no other site can be closer
to q, as so q would not be incident. Following, the interior of a circle
with three sites on its boundary does not contain any other site.

2. Assume such a q. We obviously have d(q, pi) = d(q, pj) ≤ d(q, pk) for
all k. Following q is on an edge or a vertex of Vor(P). But we just
have seen that it cannot be a vertex, as three sites must exists on the
circle. Hence, only the stated case remains.

Conversely, let the edge e be defined by B(pi, pj). It is clear that the
largest empty circle of centered at any point on the edge’s interior must
contain pi and pj on its boundary, and no other site.

1.5. VORONOI DIAGRAMS 9

1.5.1 Voronoi and Delaunay

There is a one-to-one relation between the Voronoi cells and the cells of the
Delaunay triangulation. A vertex of the Voronoi diagram is a point where
at least three sites (points of P) are equally distant. They are centrepoints
for circumcenters in the Delaunay triangulation. Or said differently: One
can draw a circle through these three points, such that no other point of
P is contained it the circle. That is, a Voronoi vertex corresponds to an
open polygonal region in the Delaunay triangulation, an edge of the Voronoi
diagram corresponds to a Delaunay edge, and a open polygonal region of
the Voronoi diagram corresponds to a vertex in the Delaunay triangulation
(i.e., a site itself). The correspondence is also valid for d-dimensional spaces,
with the property that dimensions of related Delaunay and Voronoi regions
always sum up to d.

1.5.2 Computing a Voronoi Diagram

Using the connection between Delaunay triangulations and convex hulls,
any convex-hull algorithm for R3 can be used to obtain DT in R2, such
as incremental insertion, divide-and-conquer, or gift-wrapping (we have not
seen those in the lecture). The Voronoi diagram itself can be computed
in linear time from DT using the one-to-one correspondence (requires to
compute rational coordinates).

Beyond those, there is Fortune’s sweep line algorithm (O(n log n)) to
compute the Voronoi diagram directly. It is already optimal, as sorting n
numbers can be reduced to the Voronoi problem and following the tight
Ω(n log n) lower bound holds as well. We omit details on the algorithm,
as we first introduce the sweep for another problem in the next lecture.
Anyhow, the interested reader is referred to the nice introduction given in [1,
Chapter 7.2].

1.5.3 Misc

There are non-trivial subtleties to consider, if P is not in general position.
Some more theorems:

Theorem 5. If all p ∈ P are collinear, Vor(P) consists of n − 1 parallel
lines and n cells. Otherwise, it is connected and its edges are either segments
of half-lines.

Theorem 6. Vor(P) (with |P | ≥ 3) has at most 2n − 5 vertices and not
more than 3n− 6 edges.

Voronoi diagrams exists in many spaces, with many site-types, and many
different distance functions. All are beyond the scope of this overview. More
can be found in [1, Chapter 7] and [3, Chapter 23].

10CHAPTER 1. DELAUNAY TRIANGULATION AND VORONOI DIAGRAMS

Bibliography

[1] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark H. Over-
mars. Computational geometry. Springer, Berlin [u.a.], 3., ed. edition,
2008.

[2] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teil-
laud, and Mariette Yvinec. Triangulations in cgal. Comput. Geom. The-
ory Appl., 22:5–19, 2002.

[3] Jacob E. Goodman and Joseph O’Rourke. Handbook of discrete and
computational geometry, volume - of Discrete mathematics and its appli-
cations. Chapman & Hall/CRC, Boca Raton, 2nd. ed. edition, 2004.

[4] Mariette Yvinec. 2d triangulations. In CGAL Editorial Board, editor,
CGAL User and Reference Manual. 3.5 edition, 2009.

11

